Blind Deconvolution of PET Images using Anatomical Priors
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Goal. Improvement of the quality of positron emission tomography Prior knowledge on the image and the PSF

(PET) images for a better delineation of tumor volumes. . Q
S
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Uniform activity in Q: (Vx); = 0
if i € Q (e.g., in the bladder)
accurate delineation of 2 available

(e.g., with CT scan) [1]

Context. Access to reconstructed
images from different clinical centres

and raw anatomical images from
combined PET/CT scanners.
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Challenge. No access to scanners properties

. . Knowled the struct f the i g,
(e.g., the point spread function) and raw PET data. nowledge on the structure of the image (e.g

TV or sparsity in wavelet basis)

Non negativity and preserva-

Acquisition process
tion of the total photon counts

External and internal factors degrade the image resolution.
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x € RY = Rylx](7)
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Blind deconvolution (BD)

I8FDG

Forward model Non convex inverse problem

minimize £||h®x —y|5 + TV(x)
Assumptions x,h
subject to (Vx); =0 ifz¢e€ Qq,0s,...,
e h € RY: unknown convolution operator (linear and uniform) J (VX) 1N :
XEO, hZO, Zz:1|h1| — 1.

o 1 € RY: additive, white and Gaussian noise

Solved through an alternated minimization [2,3]:

How to simultaneously estimate h and restore image x from y?
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e [(x,h) : objective function including cost function and constraints

® )., \y: cost-to-move parameters
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Validation and results on synthetic data
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1. BD with priors on €2: hgp and Xsp
2. NBD of new y without prior on €2: validation

if hgp leads to regions with vanishing gradient
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Results on real data

cylindrical holes filled with **FDG
Philips GEMINI-TF PET/CT scanner (15 min)
pixel size: 2 x 2 mm? & image size: 64 x 64

pel A\ *G

e Poisson noise and mixture Poisson/Gaussian noise

Phantom properties:
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Future work
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e 3D volume instead of 2D reconstruction per slice
e Extra constraints on the kernel (e.g., sparsity in wavelet basis)

e Work with patient data



