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1. Summary

» Goal: Fast acquisition of Hyper-spectral (HS) data using Fourier
transform interferometry (FTI)

» Motivations: Application of FTI in biology, e.g., fluorescence
spectroscopy

FTI can reach high resolution without reducing SNR

X Higher resolution = longer acquisition time => more photo-bleaching
(photochemical alteration of the dyes)

» Contribution: Resorting the theory of compressed sensing (CS) to
reduce the number of FTI measurements = shorter acquisition time/less
light exposure

» Challenges: Low-complexity model, sub-sampling technique
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3. Compressive Sensing-FTI (CS-FTI)

» Interferogram signals are acquired at M mirror positions (M << N,,).

Incomplete
interferograms

» Low-complexity model

> Spectral domain = columns of X': compressible in 1D wavelet bases, i.e.,
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> Spatial domain = rows of X: compressible in 2D wavelet bases, i.e.,

> Joint spectral-spatial sparsity
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» Sampling model
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» Reconstruction

S = argmin |vec(U)|ly st Y =ILFW,pUWT_
UERNVXNP

X =W, pSWTI_ (1)

4. Numerical Results

» Synthetic ground-truth HSV of size 64 X 128 X 128.
» Solving Problem. 1 using Douglas-Rachford algorithm [2].
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Figure 1: lllustration of nine spectral bands  Figure 2: Fluorochrome signatures used for

of the ground-truth HSV. generation of the ground-truth HSV.
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Figure 3: Reconstruction performance of uniform (o = 0) and variable density

sampling (o € {0.5,1,1.5}).

5. Take Home Message

» We presented a proof of concept for turning a conventional FTI| into a fast

CS-FTI.

» The HSV is sparse (or compressible) in the Kronecker product of 1D and
2D wavelet bases.

» Uniform density sampling should be modified to a variable density scheme
by exploiting the coherency between sparsity and sampling bases.
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