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Atomic norm

the atomic norm associated with a set C is the gauge of its convex hull:

g(x) = inf {t > 0 | x/t ∈ convC}

• a convex, nonnegative, positively homogeneous function

• the largest function with these properties that satisfies g(x) ≤ 1 for x ∈ C

• not necessarily a norm

• a unified descripton of convex `1-like penalties

(Chandrasekharan, Recht, Parrilo, Willsky 2012)
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Atomic norm

• more explicit expression, obtained by expanding convC in the definition:

g(x) = inf {
r∑

k=1

θk | x =

r∑
k=1

θkak, θk ≥ 0, ak ∈ C}

• if C is symmetric (a ∈ C implies sa ∈ C for |s| = 1):

g(x) = inf {
r∑

k=1

|θk| | x =

r∑
k=1

θkak, ak ∈ C}

Examples

• trace norm g(X) =
∑
i σi(X): atomic norm of

{vwH | ‖v‖ = ‖w‖ = 1}

• g(X) = trX on dom g = {X | X � 0}: atomic norm of

{vvH | ‖v‖ = 1}
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Regularization with atomic norm

minimize f(x) + g(x)

• f a convex function, possibly an indicator of a set

• equivalent problem (assume symmetric C):

minimize f(x) +
r∑

k=1

|θk|

subject to
r∑

k=1

θkak = x

a1, . . . , ar ∈ C

unknowns are variable x, parameters θk, ak, r of the decomposition

• extends LASSO, basis pursuit, noisy basis pursuit, . . . to non-finite sets C
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Complex exponentials

C =

{
γ (1, ejω, ej2ω, . . . , ej(n−1)ω) | ω ∈ [0, 2π), |γ| = 1√

n

}
• atomic norm g(x) is minimum of

∑
k |θk| subject to

x =
1√
n


1 1 · · · 1
ejω1 ejω2 · · · ejωr

... ... ...
ej(n−1)ω1 ej(n−1)ω2 · · · ej(n−1)ωr



θ1

θ2
...
θr


• g(x) is optimal value of semidefinite program with variables V ∈ Hn, w ∈ R

minimize (trV + w)/2

subject to
[
V x
xH w

]
� 0, V is Toeplitz

(Candès, Fernandez-Granda 2013; Tang, Bhaskar, Shah, Recht 2013; Yang, Xie 2015)
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Atomic norm regularization

minimize f(x) +
r∑

k=1

|θk|

subject to x =
1√
n


1 1 · · · 1
ejω1 ejω2 · · · ejωr

... ... ...
ej(n−1)ω1 ej(n−1)ω2 · · · ej(n−1)ωr



θ1

θ2
...
θr



variables: x, parameters θk, ωk, r of decomposition

Convex formulation

minimize f(x) + (trV + w)/2

subject to
[
V x
xH w

]
� 0, V is Toeplitz

applications include superresolution, ‘gridless’ compressed sensing
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Matrix extension

minimize f(X) +
r∑

k=1

‖θk‖

subject to X =
1√
n


1 1 · · · 1
ejω1 ejω2 · · · ejωr

... ... ...
ej(n−1)ω1 ej(n−1)ω2 · · · ej(r−1)ωm



θH1
θH2...
θHr



variables: matrix X , parameters θk, ωk, r of decomposition

Convex formulation

minimize f(X) + (trV + trW )/2

subject to
[

V X
XH W

]
� 0, V is Toeplitz

(Li, Chi 2014; Yang, Xie 2014)
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Outline

This talk

• semidefinite representations of a larger class of atomic norms

• applications to low-rank matrix decompositions with structure

Outline

• introduction

• Carathéodory-type matrix decomposition

• structured trace norm penalties

• examples

• duality



Decomposition of positive semidefinite Toeplitz matrix

an n× n positive semidefinite Toeplitz matrix X can be decomposed as

X =

r∑
k=1

|ck|2


1
ejωk

ej2ωk

...
ej(n−1)ωk




1
ejωk

ej2ωk

...
ej(n−1)ωk


H

=

r∑
k=1

|ck|2


1 e−jωk · · · e−j(n−1)ωk

ejωk 1 · · · e−j(n−2)ωk

... ... . . . ...
ej(n−1)ωk ej(n−2)ωk · · · 1



• terms in sum are extreme rays of the convex cone of p.s.d. Toeplitz matrices

• next: extensions from papers on Kalman-Yakubovich-Popov lemma
(starting with Rantzer 1996)
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Quadratic matrix equation

let U , V be p× r matrices that satisfy

UUH = V V H

• U and V have singular value decompositions

U = PΣQH1 , V = PΣQH2

• therefore U = V S with S = Q2Q
H
1 (a unitary matrix)

• take Schur decomposition S = Qdiag(λ)QH :

UQ = V Q diag(λ)

with Q unitary and |λ1| = · · · = |λr| = 1
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Decomposition of positive semidefinite Toeplitz matrix

• n× n matrix X is Toeplitz if FXFH = GXGH where

F =
[

0 In−1

]
, G =

[
In−1 0

]
• factorize X = Y Y H ; the matrix Y satisfies (FY )(FY )H = (GY )(GY )H :

FY Q = GY Q diag(λ) with Q unitary, |λ1| = · · · = |λr| = 1

• columns a1, . . . , ar of Y Q give the decomposition

X =

r∑
k=1

aka
H
k , Fak = λkGak, |λk| = 1

vectors ak have the form ak = ck(1, λk, . . . , λ
n−1
k ) with λk = ejωk

Note: this holds for any pair F , G of equal dimension
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General quadratic equation

suppose Φ ∈ H2 with det Φ < 0, and U , V are p× r matrices with

Φ11UU
H + Φ21UV

H + Φ12V U
H + Φ22V V

H = 0

• then there exist unitary Q, vectors µ, ν with

UQdiag(ν) = V Q diag(µ),

[
µk
νk

]H
Φ

[
µk
νk

]
= 0, (µk, νk) 6= 0

• last condition restricts λk = µk/νk to circle or line in complex plane

Φ:
[

1 0
0 −1

] [
0 1
1 0

] [
0 j
−j 0

]
λ: unit circle imaginary axis real axis
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Quadratic matrix equation and inequality

suppose Φ,Ψ ∈ H2 with det Φ < 0, and U , V are p× r matrices with

Φ11UU
H + Φ21UV

H + Φ12V U
H + Φ22V V

H = 0

Ψ11UU
H + Ψ21UV

H + Ψ12V U
H + Ψ22V V

H � 0

• then there exist unitary Q, vectors µ, ν with (µk, νk) 6= 0, such that

UQdiag(ν) = V Q diag(µ)

and [
µk
νk

]H
Φ

[
µk
νk

]
= 0

[
µk
νk

]H
Ψ

[
µk
νk

]
≤ 0

• last two conditions restrict λk = µk/νk to segment of circle or line

• efficiently computed using standard matrix decompositions (SVD, Schur)

(Iwasaki, Meinsma, Hara 2000; Iwasaki and Hara 2003)
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Generalized Carathéodory decomposition

the following two properties are equivalent:

• X can be decomposed as

X =

r∑
k=1

aka
H
k

with vectors ak taken from the set

A = {a ∈ Cn | (µG− νF )a = 0, (µ, ν) ∈ CΦΨ}

CΦΨ is a segment of a line or circle in the complex plane, parameterized by

(µ, ν) 6= 0,

[
µ
ν

]H
Φ

[
µ
ν

]
= 0,

[
µ
ν

]H
Ψ

[
µ
ν

]
≤ 0

• X is positive semidefinite and satisfies

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0
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Example

F =
[

0 I
]
, G =

[
I 0

]
, Φ =

[
1 0
0 −1

]
, Ψ =

[
0 −ejα

−e−jα 2 cosβ

]

the following two properties are equivalent:

• X can be decomposed as

X =

r∑
k=1

|ck|2


1
ejωk

...
ej(n−1)ωk




1
ejωk

...
ej(n−1)ωk


H

, |ωk − α| ≤ β

• X is positive semidefinite and satisfies

FXFH −GXGH = 0 (X is Toeplitz)

−ejαFXGH − e−jαGXFH + 2(cosβ)GXGH � 0
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Other interesting choices of F , G

Orthogonal polynomials on the real axis: CΦΨ defines interval of real axis,

λG− F =
[
λIn−1 − J −βen−1

]
, J a Jacobi matrix

A contains vectors
c (p0(λ), p1(λ), . . . , pn−1(λ))

for the polynomials pk defined by 3-term recurrence with coefficients in J , β

State-space linear system model: CΦΨ is unit circle or imaginary axis,

λG− F =
[
λI −A B

]
(size ns × (ns +m))

A contains vectors [
(λI −A)−1Bu

u

]
, u ∈ Cm
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Outline

• Introduction

• Carathéodory-type matrix decompositions

• Structured trace norm penalties

• Example

• Duality



Trace penalty for positive semidefinite matrices

define a structured ‘trace’ penalty function

g(X) =

 trX if X =

r∑
k=1

aka
H
k with a1, . . . , ar ∈ A

+∞ otherwise

• vectors ak are taken from A = {a ∈ Cn | (µG− νF )a = 0, (µ, ν) ∈ CΦΨ}

• g(X) is the atomic ‘norm’ of C = {aaH ∈ Hn | a ∈ A, ‖a‖ = 1}

Semidefinite representation: g(X) = trX if X � 0 and

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0,

and g(X) = +∞ otherwise
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Regularization with structured trace penalty

minimize f(X) +
r∑

k=1

‖ak‖2

subject to X =
r∑

k=1

aka
H
k

a1, . . . , ar ∈ A

• variables: X ∈ Hn, and parameters a1, . . . , ar, r in the decomposition

• regularization term promotes existence of structured low-rank decomposition

Semidefinite formulation

minimize f(X) + trX

subject to Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0

X � 0
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Example: line spectrum estimation by covariance matrix fitting

minimize f(R) + γ
r∑

k=1

|ck|2

subject to R = σ2I +
r∑

k=1

|ck|2


1
ejωk

...
ej(n−1)ωk




1
ejωk

...
ej(n−1)ωk


H

ω1, . . . , ωr ∈ [α− β, α+ β]

• for example, f(R) = ‖R−Rm‖2, with Rm an estimated covariance matrix

• variables are R and parameters σ2, ck, ωk, r in decomposition of R

Semidefinite formulation (variables X , t)

minimize f(X − tI) + (γ/n) trX

subject to t ≥ 0, X � 0

FXFH = GXGH (X is Toeplitz)
−ejαFXGH − e−jαGXFH + 2(cosβ)GXGH � 0
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Trace norm (nuclear norm) for nonsymmetric matrices

• ‖Y ‖∗ (sum of singular values) can be expressed in several ways, including

‖Y ‖∗ = inf {
r∑

k=1

‖vk‖‖wk‖ | Y =

r∑
k=1

vkw
H
k }

= inf {1
2

r∑
k=1

(‖vk‖2 + ‖wk‖2) | Y =

r∑
k=1

vkw
H
k }

• ‖Y ‖∗ is also the atomic norm of C = {vwH | ‖v‖ = ‖w‖ = 1}

Semidefinite representation: ‖Y ‖∗ is the optimal value of

minimize
1

2
(trV + trW ) subject to

[
V Y
Y H W

]
� 0
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Structured trace norm

• add constraints on vk, wk in the definition of trace norm:

h(Y ) = inf {
r∑

k=1

‖vk‖‖wk‖ | Y =

r∑
k=1

vkw
H
k , (vk, wk) ∈ A}

• here A is defined as before, but with block-diagonal F , G:

A = {a | (µG− νF )a = 0, (µ, ν) ∈ CΦΨ}

with
G =

[
G1 0
0 G2

]
, F =

[
F1 0
0 F2

]
• equivalently,

A = {(v, w) | (µG1 − νF1)v = 0, (µG2 − νF2)w = 0, (µ, ν) ∈ CΦΨ}

• row dimension of G1, F1 and G2, F2 may be zero (i.e., v or w are unrestricted)
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Semidefinite representation

h(Y ) = inf {
r∑

k=1

‖vk‖‖wk‖ | Y =

r∑
k=1

vkw
H
k , (vk, wk) ∈ A}

= inf {1
2

r∑
k=1

(‖vk‖2 + ‖wk‖2) | Y =

r∑
k=1

vkw
H
k , (vk, wk) ∈ A}

Semidefinite representation: h(Y ) is the optimal value of the SDP

minimize (trV + trW )/2

subject to X =

[
V Y
Y H W

]
� 0

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0
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Regularization with structured trace norm

minimize f(Y ) +
r∑

k=1

‖vk‖‖wk‖

subject to Y =
r∑

k=1

vkw
H
k

(v1, w1), . . . , (vr, wr) ∈ A

variables: Y ∈ Hm×n, and parameters (vk, wk), r in the decomposition

SDP formulation (with variables Y , V ,W )

minimize f(Y ) + (trV + trW )/2

subject to X =

[
V Y
Y H W

]
� 0

Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0
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Special case: column structure

h(Y ) = inf {
r∑

k=1

‖vk‖‖wk‖ | Y =

r∑
k=1

vkw
H
k , vk ∈ A1}

= inf {
r∑

k=1

‖wk‖ | Y =

r∑
k=1

vkw
H
k , vk ∈ A1, ‖vk‖ = 1}

• colums vk taken from A = {v | (µG1 − νF1)v = 0, (µ, ν) ∈ CΦΨ}

• row vectors wHk are unconstrained

Semidefinite representation: h(Y ) is the optimal value of the SDP

minimize (trV + trW )/2

subject to
[

V Y
Y H W

]
� 0

Φ11F1V F
H
1 + Φ21F1V G

H
1 + Φ12G1V F

H
1 + Φ22G1V G

H
1 = 0

Ψ11F1V F
H
1 + Ψ21F1V G

H
1 + Ψ12G1V F

H
1 + Ψ22G1V G

H
1 � 0
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Example: fitting sinusoids to noisy data

Penalized least squares formulation

minimize f(x) + γ
√
n

r∑
k=1

|ck|

subject to x =
r∑

k=1

ck


1
ejωk

...
ej(n−1)ωk


• for example, f(x) = ‖x− xm‖2, with xm a noisy measurement

• optimization variables: x and signal model parameters ck, ωk, r

Semidefinite formulation

minimize f(x) + γ (trV + w) /2

subject to
[
V x
xH w

]
� 0

V is Toeplitz
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Linear sensor array

θ

1 2 3 n

d = λc/2

• r signals sk arriving from angles θk

• linear array of n sensors

• p randomly chosen sensors are used

• output of sensor i is

yi =

r∑
k=1

di(ωk)ske
−j(i−1)ωk where ωk = π sin θk

• two types of sensors, detecting signals in [−π/2, π/6] or [−π/6, π/2]:

di(ω) =

{
1 for θ ∈ [−π/2, π/6] or [−π/6, π/2], respectively
0 otherwise
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Atomic norm formulation

minimize
3∑
j=1

rj∑
k=1

|wjk|

subject to yj =
rj∑
k=1

vjkwjk, vjk ∈ Aj, j = 1, 2, 3

(y1 + y2)I1 = b1, (y2 + y3)I2 = b2

• three sets Aj, for three sectors θ ∈ [−π2 ,−
π
6 ], [−π6 ,

π
6 ], [π6 ,

π
2 ]:

Aj = {(1, ejω, ej2ω, . . . , ej(n−1)ω) | |ω − αj| ≤ βj}, j = 1, 2, 3

• variables y1, y2, y3 are n-vectors (signals at n sensors from the 3 sectors)

• index sets I1 and I2 contain indices of used sensor outputs of type 1, 2

• b1 and b2 are measurements (assumed exact for simplicity)
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Semidefinite formulation

minimize
3∑
j=1

rj∑
k=1

|wjk|

subject to yj =
rj∑
k=1

vjkwjk, vjk ∈ Aj, j = 1, 2, 3

(y1 + y2)I1 = b1, (y2 + y3)I2 = b2

Equivalent SDP

minimize
3∑
j=1

(trVj + wj)/2

subject to
[
Vj yj
yHj wj

]
� 0

FVjF
H = GVjG

H, j = 1, 2, 3 (Vj is Toeplitz)

−e−jαjFVjG
H − ejαjGVjF

H + 2 cosβjGVjG
H � 0, j = 1, 2, 3

(y1 + y2)I1 = b1, (y2 + y3)I2 = b2
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Example

n = 500 sensors, 20 sensors used of each type, 7 sources

−π/2 0 π/2
Angle of arrival

M
ag

ni
tu
de

−π/2 0 π/2
Angle of arrival

M
ag

ni
tu
de

• red: exact solution

• blue (left): solution from SDP with sector information

• blue (right): solution from SDP omitting sector constraints
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Exact recovery

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Number of measurements p

Re
co

ve
ry

ra
te

With sector constraints
No sector constraints

n = 50 sensors; 7 sources; p sensor measurements used
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Regularization with structured trace penalty

minimize f(X) +
r∑

k=1

‖ak‖2

subject to X =
r∑

k=1

aka
H
k

ak ∈ A

• f a convex function of a Hermitian matrix variable X

• A = {a ∈ Cn | (µG− νF )a = 0, (µ, ν) ∈ CΦΨ}

Semidefinite formulation

minimize f(X) + trX

subject to Φ11FXF
H + Φ21FXG

H + Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H + Ψ12GXF
H + Ψ22GXG

H � 0

X � 0
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Dual problem

Dual of semidefinite formulation

maximize −f∗(−Z)

subject to Z −
[
F
G

]H
(Φ⊗ P + Ψ⊗Q)

[
F
G

]
� I

Q � 0

• variables: Z ∈ Hn, P , Q ∈ Hp

• f∗ is conjugate function of f

Interpretation: a problem with infinitely many constraints

maximize −f∗(−Z)
subject to aHZa ≤ 1 for all a ∈ A, ‖a‖ = 1

equivalence follows from generalized Kalman-Yakubovich-Popov lemma

(Iwasaki and Hara 2005)
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Example

Primal problem

minimize f(X) +
r∑

k=1

|ck|2

subject to X =
r∑

k=1

|ck|2


1
ejωk

...
ej(n−1)ωk




1
ejωk

...
ej(n−1)ωk


H

with |ωk − α| ≤ β

Dual problem

maximize −f∗(−Z)

subject to
1

n


1
ejω

...
ej(n−1)ω


H

Z


1
ejω

...
ej(n−1)ω

 ≤ 1 for |ω − α| ≤ β
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Summary

• atomic norm of sets of matrices with rows/columns chosen from

A = {a | (λG− F )a = 0, λ ∈ CΦΨ, ‖a‖2 = 1}

CΦΨ is segment (interval) of circle or line in the complex plane

• SDP representations based on results for KYP lemma, i.e., for matrix pencil

λG− F =
[
λI −A B

]
• customized interior-point algorithms handle these types of constraints (typically,

with complexity O(n3) instead of O(n4))

Reference: H.-H. Chao, L. Vandenberghe, Semidefinite representations of gauge functions for
structured low-rank matrix decomposition, arXiv:1604:02500
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