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Agenda

» Multi-pitch estimation.

» Superresolution/gridless/atomic norm using semidefinite
programming.

» Bringing it together.

» Complex- and real-valued data.

» Simulations



Multi-pitch estimation I

» Harmonic signals: Fundamental wy, first harmonic 2 - wy,
second harmonic 3 - wy.

» Multi-pitch: superposition of £ = 1,..., K harmonic
signals.

» Application in music, speech, vibration analysis etc.



Multi-pitch estimation II
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» Multi-pitch estimation: Estimate wy,, amplitudes (and K)!.
» Problem may be ill-posed or ill-conditioned.

'M. G. Christensen and A. Jakobsson. Multi-Pitch Estimation. San
Rafael, CA, USA: Morgan & Claypool, 2009.




Atomic decomposition

>

A, = {; [1,exp(jw), ..., exp(j(n — 1)w)]

Atomic decomposition over a continuous dictionary
A, C C" using a regularization term
minimize  f(37_; axc) + 30, llexl):
© k=1 “kCk k=1 11Ck 112 (1)
subject to ap € A, k=1,...,r
Variables: Atoms a; € C™, coefficients
c, € C™ k=1,...,r and the number of selected atoms r.
m = 1 single measurement, m > 1 multiple measurement
case. Notice a kind of (group)-sparsity promoting term.
In current literature: Often

T
vn
llw—al <B,|s| =1,s € <c} 2)

with « =0 and 5 = 7.



Atomic decomposition as a SDP

» With a =0 and § =7, f convex, the atomic
decomposition is equivalent to the SDP

minimize  f(X12) + %(tr X11 + tr Xo9)

. X1 X2
subject to =0
J |:Xg XQQ [
X11 cT”
X12 G CTI,XnL7 X22 G H”L

with 7 = rank(X},).?

?E. J. Candes and C. Fernandez-Granda. “Super-resolution from noisy
data”. In: J. Fourier Anal. Appl. 19.6 (2013), pp. 1229-1254; G. Tang
et al. “Compressed Sensing Off the Grid”. In: IEEE Trans. Information
Theory 59.11 (2013), pp. 7465-7490; B. N. Bhaskar, G. Tang, and B. Recht.
“Atomic Norm Denoising With Applications to Line Spectral Estimation”.
In: IEEE Trans. Signal Processing 61.23 (2013), pp. 5987-5999; Y. Li and
Y. Chi. “Off-the-Grid Line Spectrum Denoising and Estimation With
Multiple Measurement Vectors”. In: IEFE Trans. Signal Processing 64.5
(2016), pp. 1257-1269.




Complex-valued multi-pitch model

L
T = ZZK(lw)E;, y=x+w

=1
with
y=[yo, -, yn-1]
_ _ _ 9T
C] = [(3131, ey Cl,](]
T
w = [wl,..../w;d
Zg(w) = [z(wl), o ,Z(u}]\)}
z(wi) = [1,exp(jwi), - ., exp(j(N — D)wy)]

w = [’mo, . ,'11)1\/_1} o CN(0,0°1).



Bringing it together I

» Relating the formulations at n = NL

r

X9 = Z(Lk(ff, ap € Ay, . (11)
k=1

» Define the selection matrix P, that selects N elements Pv
from every Ilth element of v, Pv = [@1 s ULl - - - ,UH(N,W]
Then

z(lwg) = Pjag, for some ap € Anp, (12)

and we may form the selection and add matrix

P = [pl P - PL] e RNXNB,PI c RVXNL (13)



Bringing it together II

> Let o = [[a]e -+ [elk
» Then

K
= Z Pvec(ayci)
k=1

K
= Pvec (Z akc{j)

k=1
= Pvec (Xj2)

for some ap € Anr,k=1,..., K and K =r.

) )



A complex-valued SDP formulation

» A complex-valued multi-pitch estimator can then be
formulated via the SDP

minimize %(tr(Xn) + tr(Xa2))
subject to ||y —zll2 <4
x = Pvec(Xj2)
X1 X2 (14)
[Xg X22:| =0
X1 € TNL
Xoo € HL,Xu € (CNLXL .



A real-valued SDP formulation I

» The real-valued model is

L
r=R (Z ZK(lw)q) , y=zr+w (15)
=1

with w ~ N (0, 0%1).
» A real-valued y € RV atomic norm multi-pitch SDP
estimator is
minimize & (tr(X11) + tr(Xs))
subject to ||y — P vec(R(X12))[l2 <6

X1 Xu} .

=0 16

|:Xg X22 - ( )
X11 < TNL

X22 c HL./ X12 c CNLXL

with a solution (X7, X35, X75).



A real-valued SDP formulation II

» The optimal objective is
3 (tr(X{)) + tr(X3,)) = 5(tr(R(XF)) + tr(R(X3,)) and

X XD X XD
I R (T VL

» If X7 is Toeplitz, then R(X7];) is also Toeplitz.

» So, (R(XT), R(X3,), R(XT,)) also solves the previous SDP.

» We can instead solve the equivalent real SDP

minimize 3 (tr(X11) + tr(Xs))
subject to ||y — P vec(Xi2)|2 <0
X111 Xio
-
3 = )
Xo9 € SL,Xu € RNLXL

with a solution that also solves the complex SDP (16).



Frequency constraint

v

If the signal y is Nyquist sampled: —7 < Lw;, < 7.
Recall the dictionary A,;:

v

A, = {\% [1, exp(jw),...,exp(j(n — 1)w)]T

lw—al <B,|s|=1,s€ <c} . (19)

v

The constrained controlled by the parameters «, 3 can be
imposed by adding a semidefinite cone constraint?

—eFX11GT — e 1*GX 11 FT 4+ 2cos(B)GX11GT <0 (20)

where F' = [() INL,J, G= [I]\r[/,l ()].

With the selection o =0, 8 = /L, (20) is a real
semidefinite cone constraint and Toeplitz.

®H.-H. Chao and L. Vandenberghe. “Extension of semidefinite

programming methods for atomic decomposition”. In: ICASSP. 2016,
pp. 4757-4761.

v




Simulations I

» Monte Carlo, R = 500 repetitions, known model-order,
K =2, L = 3, real-valued data otherwise same setup as?.

» The proposed estimators are implemented with a CVXOPT
custom solver® based on a non-canonical semidefinite cone
representation® and an alternating direction method of
multipliers with fixed & = 350 iterations.

» §: 1) solve the SDP with ¢ selected by averaging the
smallest % of the coefficients of the periodogram 2) extract
the frequencies w*, re-select the regularization parameter as
minimum of linear least-squares, re-solve the SDP.

“M. G. Christensen et al. “Multi-pitch estimation”. In: Signal
Processing 88.4 (Apr. 2008), pp. 972-983.

SM. S. Andersen et al. “Interior-point methods for large-scale cone
programming”. In: Optimization for Machine Learning. Ed. by S. Sra,
S. Nowozin, and S. J. Wright. MIT Press, 2011.

°T. Roh and L. Vandenberghe. “Discrete transforms, semidefinite
programming and sum-of-squares representations of nonnegative
polynomials”. In: STAM J. Optimiz. 16 (2006), pp. 939-964.




Simulations II

» The accuracy should at-least for unbiased estimators be
governed by the asymptotic Cramér-Rao lower bound
(CRLB) for estimating a single fundamental wy:

2402
var(dy) > T (21)
(N(N?=1)) >0 ARl

’ [€1]k|. These simulations Ag; = 1.

» The bound depends on the “enhanced SNR”” (for a single
pitch) or pseudo SNR (PSNR) for the kth pitch®

L 2 72
STk A2
PSNRy, = 10log;, ——5 0. (22)
g

"A. Nehorai and B. Porat. “Adaptive comb filtering for har monic signal
enhancement”. In: IEEE Trans. Acoust., Speech, Signal Process.” 34.5
(Oct. 1986), pp. 1124-1138.

8M. G. Christensen et al. “Multi-pitch estimation”. In: Signal
Processing 88.4 (Apr. 2008), pp. 972-983.




Simulations III: closely spaced fundamentals
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Figure : RMSE as a function of the fundamental frequency difference
wo —wy; = A, K =2, N =160, L =3, PSNR; = PSNR, = 40[dB].



Simulations IV: versus PSNR
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Figure : RMSE as a function of the PSNR = PSNR; = PSNR»,

K =2 N =160, L =3, and w; = 0.1580, wy = 0.6364.




Summary

Multi-pitch estimation using semidefinite-programming:

>

>

Convex optimization (semidefinite programming (SDP)).
Gridless (atomic norm/superresolution, numerically:
accuracy determined by the underlying method).

The real-valued model is “easier” /” computational more
efficient” compared to the complex-valued model.
Approximately achieves the CRLB.

High resolution (separating two pitches with almost the
same frequency).



