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Blind Calibration and Random Linear Models
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Random Linear Sensing Model

⌘
yi ,l = di hai ,l , xi, di > 0, x 2 Rn

i = 1, . . . , m, l = 1, . . . , p

y

(l) = diag (d)A(l)x , d 2 Rm+ , x 2 Rn

l = 1, . . . , p,mp � n +m



Blind Calibration and Random Linear Models
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Uncalibrated gains  
or attenuations

yi ,l = di hai ,l , xi, di > 0, x 2 Rn

i = 1, . . . , m, l = 1, . . . , p

y

(l) = diag (d)A(l)x , d 2 Rm+ , x 2 Rn

l = 1, . . . , p,mp � n +m
⌘

Random Linear Sensing Model



Blind Calibration and Random Linear Models
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Random Linear Sensing Model

⌘
yi ,l = di hai ,l , xi, di > 0, x 2 Rn

i = 1, . . . , m, l = 1, . . . , p

y

(l) = diag (d)A(l)x , d 2 Rm+ , x 2 Rn

l = 1, . . . , p,mp � n +m

■ Which algorithm to jointly recover x and d ? Does it provably converge to 

the exact solution? 

■ How many snapshots and measurements suffice for an accurate recovery?  

Sample complexity bound (mp) required with i.i.d. sub-Gaussian random 

vectors     ?ai ,l



A Non-Convex Optimisation Problem

■ We introduce the Blind Calibration Problem: 
 
 
 

■ The problem is clearly non-convex (indefinite Hessian matrix in general): the sensing 
model is bilinear, while the problem is biconvex (similar to blind deconvolution). 

■ The objective has minima in: 

■ The constraint fixes one global minimiser:  

■ Since the gains are positive and bounded, we let:
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(x̂ , d̂) = argmin
⇠2Rn,�2⇧m+

1

2mp

pX

l=1

k diag (d)A(l)x| {z }
y

(l)

�diag (�)A(l)⇠k22

(x?, d?) :=
� kdk1
m x ,

m
kdk1 d

�

�
(⇠, �) 2 Rn ⇥ Rm : ⇠ = 1

↵x , � = ↵d ,↵ 2 R \ {0}
 

(Scaled) probability simplex Sum of Euclidean data fidelity terms

�, d? 2 C⇢ ⇢ ⇧m+ , C⇢ := 111m +111?m \ ⇢Bm1
d? = 111m + !, ! 2 111?m \ ⇢Bm1
� = 111m + ", " 2 111?m \ ⇢Bm1

where:
⇢ > kd? � 111mk1, ⇢ < 1 (Perturbation analysis around 1!)

�2

�1

R2 ⌦ · · ·

�

⇧2+

111?2 \ ⇢B21
1112

d

L

i

n

e

o

f

s

o

l

u

t

i

o

n

s

↵d

!

"

r

C⇢



Solution by Projected Gradient Descent

■ The solution is obtained by projected gradient descent: 
 
 
 
 
 
 
 
 
 

■ The chosen initialisation is crucial: in expectation (asymptotic p) it yields x 
(unbiased estimator). For finite p it can be shown to lie close to the global 
minimum. 

■ Projection on     is only a technical requirement for proofs (not required in 
experiments).
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1: Initialise ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
µ⇠ := argmin�2R f (⇠k � �r⇠f (⇠k , �k), �k)
µ� := argmin�2R f (⇠k , �k � �r?� f (⇠k , �k))

{Line search in ⇠, �}

4: ⇠k+1 := ⇠k � µ⇠r⇠f (⇠k , �k) {Signal Update}
5: �

k+1
:= �k � µ� r?� f (⇠k , �k) {Gain Update}

6: �k+1 := PC⇢�k+1 {Projection on C⇢}
7: k := k + 1
8: end while

C⇢

r?� f (⇠, �) := P111?mr�f (⇠, �)



■ Consider a low-dimensional intuitive example for 
a random instance of the problem, at 
 
 
 
 
 
 
 
 
 
 

■ To measure distances, we adopt the pre-metric: 

■ Thus, we define a neighbourhood of the global minimiser as: 

Geometric Analysis
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n = 2, m = 2, k⇠k2 = 1, parametrising �(r).
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D,⇢ D,⇢ D,⇢ D,⇢

�(⇠, �) := k⇠ � x?k22 +
kx?k22
m k� � d

?k22.

D,⇢ := {(⇠, �) 2 Rn ⇥ C⇢ : �(⇠, �)  2kx?k22}, ⇢ 2 [0, 1).



Convergence Guarantees

■ Ideally: show via Hessian the local convexity of the problem in a given 
neighbourhood (for finite p, by concentration of measure). 

■ Simplification: first-order properties in the neighbourhood of the 
minimiser with i.i.d. sub-Gaussian random vectors. We need: 

1. Initialisation: fixes radius of neighbourhood, 

2. Regularity Condition: developing the distance at iterate k+1, 
 
 
 

3. Projection on convex set     ensures 

■ Let’s have a look at the gradient: 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�(⇠k+1, �k+1) =�(⇠k , �k)� 2

Gradient Angle Partz }| {�
µ
⇠

hr
⇠

f (⇠k , �k), ⇠k � x?i+ µ�
kx?k22
m hr

?
�

f (⇠k , �k), �k � g?i
�

+ µ2
⇠

kr
⇠

f (⇠k , �k)k22 + µ2�
kx?k22
m kr

?
�

f (⇠k , �k)k22| {z }
Gradient Magnitude Part

< �(⇠k , �k)

(⇠0, �0) 2 D,⇢, ⇢ 2 [0, 1)

C⇢ �(⇠k+1, �k+1)  �(⇠k+1, �k+1)

r?f (⇠, �) = 1
mp

pX

l=1


A

>
l diag(�) (diag(�)Al⇠ � diag(d)Alx)

P 1?m
diag(Al⇠) (diag(�)Al⇠ � diag(d)Alx)

�
�!
p!1

1
m


k�k22⇠ � (�>d)x
k⇠k22"� (⇠>x)!

�



Initialisation Proximity and Gradient Regularity

■ To prove the minimum sample complexity that guarantees convergence, we need 
to verify two properties of the initialisation and the neighbourhood respectively. 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Initialise …

Proposition (Initialisation Proximity). For any ✏ 2 (0, 1) we have, with probability

exceeding

1� Ce�c✏2mp � (mp)�t

for some C, c > 0, that k⇠0 � x?k2  ✏kx?k2 provided n & t log(mp) and

mp & ✏�2(n +m) log
�
n
✏

�
.

Since �0 = 1m we also have k�0 � d?k1  ⇢ < 1. Thus (⇠0, �0) 2 D,⇢ with the

same probability and  :=
p
✏2 + ⇢2 

p
2.



Initialisation Proximity and Gradient Regularity
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Initialise … …and Converge

Proposition (Regularity condition in D,⇢). For any � 2 (0, 1), ⇢ 2 [0, 1), t > 0,
provided ⇢ < 1�2�

9 , n & t log(mp), p & ��2 logm and

p
mp & ��2(n +m) log( n� ),

with probability exceeding

1� C
⇥
me�c�

2p
+ e�c�

2
p
mp
+ (mp)�t

⇤

for some C, c > 0, we have that for all (⇠, �) 2 D,⇢,
D
r?f (⇠, �),

h
⇠�x?
��d?

iE
� 1
2⌘�(⇠, �) (Bounded angle)

kr?f (⇠, �)k22  L2 �(⇠, �) (Lipschitz gradient)

for ⌘ := 2(1� 9⇢� 2�) > 0, L := 4
p
2[1 + ⇢+ (1 + )kx?k2].

p
mp & ��2

(n+m) log

�
n
�

�



A Convergence Guarantee
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■ Under the previous conditions, we can bound the error decay of 
projected gradient descent when run in a neighbourhood of the 
global minimiser. 

■ The projection step serves to ensure theoretically that the 
neighbourhood does not change (i.e., for the regularity condition)

Theorem (Provable Convergence to the Exact Solution). Under the conditions of
the previous Propositions we have that, with probability exceeding

1� C
⇥
me�c�

2p + e�c�
2
p
mp + e�c✏

2mp + (mp)�t
⇤

for some C, c > 0, our descent algorithm with µ
⇠

:= µ, µ
�

:= µ m
kx?k22

has error

decay

�(⇠k , �k) 
�
1� ⌘µ+ L2⌧ µ

2
�k�
✏2 + ⇢2)kx?k22, (⇠k , �k) 2 D,⇢

at any iteration k > 0 provided µ 2
�
0, ⌧⌘/L2

�
, ⌧ := min{1, kx?k22/m}. Hence,

�(⇠k , �k) �!
k!1

0.



Empirical Phase Transition

■ To test the problem’s phase transition we measure the probability of successful recovery                                         
 
 
for 256 randomly generated problem instances (per point). 
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(Randomised) Computational Imaging

■ An application to computational  
(compressive) imaging under 
calibration errors yields the 
following results for p = 4 
snapshots when m = n = 4096. 

■ The achieved RMSE reads: 

■ The algorithm (NC-BCP) scales 
gracefully to very large values of 
n, contrarily to other 
approaches with guarantees. 

■ This experiment also converges 
with fast random matrices, such 
as a subsampled random 
convolution    (not covered by 
current theory).
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".

Geometric Intuition in R2 ⌦R2

�
2

�
1

R2 ⌦ · · ·
�

⇧

2

+

1

?
2

\ B21 1

2

d

L

i

n

e

o
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s

o
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o
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s

↵d

P

o

s

s

i

b

l

e

n

e

g

.

c

u

r

v

a

t

u

r

e

o

f

f(⇠
,�)

!

"

r

Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�

�

Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�

�

�

2

.

p!1

Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)

r?
�

f (⇠,�)

�

,



⇠ � x

� � d

��

� �0
⇣

k⇠ � xk2
2

+ k"� !k2
2

⌘

(5)

kr
⇠

f (⇠,�)k2
2

+ kr?
�

f (⇠,�)k2
2

 �00
�k⇠ � xk2

2

+ k"� !k2
2

�

(6)

with �0 := 1� 2✏� ⇢
2

(2 + ✏), �00 := 2

m2

h

�

m(1 + ⇢2) + (1 + ✏)2
�

2

+

1

5

m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)

Numerical Experiments
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10
⇢

P
h

max{kˆx� xk2, k ˆd� dk2} < �50 dB
i

0

0.25

0.5

0.75

1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity
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ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]
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�

�

2

,
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Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1
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i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h
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2

⌘

and ⇢ 2


0, 1�2✏
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✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2
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2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠
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2

⌘

(5)

kr
⇠

f (⇠,�)k2
2
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with �0 := 1� 2✏� ⇢
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(2 + ✏), �00 := 2
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Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2
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⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�
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rf (⇠,�)� E
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Level curve at k⇠k2 = 1, where the global minimum x =
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1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
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.
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m \ ⇢Bm1. If the sample complexity
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then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
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Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".

Geometric Intuition in R2 ⌦R2
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�
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rf (⇠,�)� E
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Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
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◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
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2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)
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with �0 := 1� 2✏� ⇢
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(2 + ✏), �00 := 2

m2
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i
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Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)

Numerical Experiments
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Conclusion

■ We have shown that a simple application of gradient descent provably solves this bilinear 
inverse problem with sample complexity:  

■ Proved extensions of this approach:  

■ Blind calibration with known subspace signal/gain models (lower sample complexity). 

■ Stability analysis w.r.t. additive noise. 

■ Better sample complexity is possible (linear in number of unknowns). 

■ Future developments:  

■ Extension to signal-domain sparsity via hard thresholding: reduces sample complexity 
(i.e., blind calibration for compressed sensing); empirically shown, not yet proved. 

■ Extension to related problems: blind calibration with complex gains and sensing 
matrices; blind deconvolution. 

■ Finding applications in which blind calibration of a sensor is critical and random 
measurements can be physically implemented in the sensing device.
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Thank you for your attention.

For any question or suggestion, contact us at: 
laurent.jacques@uclouvain.be 

valerio.cambareri@uclouvain.be
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