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Introduction: Blind Calibration and Random Linear Models
A Non-Convex Approach to Blind Calibration

Solution by Projected Gradient Descent

Global Convergence Guarantees (even if non-convex!)
Experiments |: Empirical Phase Transition

Experiments Il: Computational Imaging

Conclusion and outlook
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Random Linear Sensing Model
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Random Linear Sensing Model
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Random Linear Sensing Model

vii=di{aj;, x),d>0xeR"

I=1,..., m,[=1,...,

y) = diag (d)A")x, d € RT x € R”

= Which algorithm to jointly recover x and d ? Does it provably converge to

the exact solution?

= How many snapshots anc
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= We introduce the Blind Calibration Problem:

o - ol &y |
(X,d) = argmin >mp z_; ||£1I|ag (iir)A(/))g—dmg (7)ADE|3

' EER y€lT —
B T y(/) T
¥ (Scaled) probability simplex Sum of Euclidean data fidelity terms

= The problem is clearly non-convex (indefinite Hessian matrix in general): the sensing
model is bilinear, while the problem is biconvex (similar to blind deconvolution).

I ' ni - n m. ¢ 1 L
= The objective has minima in: {(5,7) cR"XR":{==x7v=ad,acR\ {0}}
= The constraint fixes one global minimiser: (x*, d*) = (”f’#lx, ||3T|1 d)
= Since the gains are positive and bounded, we let: ce ¥
v.d €CcN?, C,=1,+1-NpBY
d’ = ]-m +w, W E 1%—7 N pIB%cr)no ( R /i;;\&é@;‘;dd
13 NpB2, s v e’
7:1m+51561#ﬂ01830m0 W 3 1, s
d
where: S
p>|ld* —1p]lec, 0 <1 (Perturbation analysis around 1!) "V



The solution is obtained by projected gradient descent:

1: Initialise & = == Y7 (A) ¥, 70 ==1m, k:=0.
2: while stop criteria not met do
fe = argmi.nveR (& — UVel (§k i) Tk) *-{Line search in £}
ey = argmingcr f (&4, Vi — UV#f(ék,’Yk))
4 &pq1 = &k — g Vel (k. vi) {Signal Update} :
5. Vg =Tk — My Vo f(€7i) {Gain Update} <.
6: Y1 = Fe,7,,, {Projection on C,} N
7 ki =k+1
3

L .
. end while Vy F(€) = P Vaf(€,7)
The chosen initialisation is crucial: in expectation (asymptotic p) it yields x

(unbiased estimator). For finite p it can be shown to lie close to the global
minimum.

Projection on C, is only a technical requirement for proofs (not required in
experiments).
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= Consider a low-dimensional intuitive example for )
a random instance of the problem, at i

. . 1% n p]RgO\is v e /\E\;e,"i £
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= To measure distances, we adopt the pre-metric:
* 12
A ) = 1IE =X 13 + P52 |y — 113

= Thus, we define a neighbourhood of the global minimiser as:

Dyp=1{(§7) €R" xCy: A€, ) < K*|IX*[I3}, p€[0,1).




Ideally: show via Hessian the local convexity of the problem in a given
neighbourhood (for finite p, by concentration of measure).

Simplification: first-order properties in the neighbourhood of the
minimiser with i.i.d. sub-Gaussian random vectors. We need:

1. Initialisation: fixes radius of neighbourhood, (§,,7¢) € Dk, 0 € [0,1)

2. Regularity Condition: developing the distance at iterate k+1,

Gradient Angle Part

A(£k+11'_7k+1) = A&k, k) — 2 (M£<V£f(€k Vi), &k — X7) + Hoy HXmH2 <Vlf(£k Y)Y 9*>)
+ gl Vef (G I3 + 13 P02 V7 (€ 1B < Ak 72

Gradient Magnltude Part

3. Projection on convex set C,ensures A&k, Vir1) < Al€ki1. 7y, 1)

Let's have a look at the gradient:

. A/ diag(y) (diag() A€ — diag(d)Ax) |
VIR = Z [ .. diag(A€) (diao(1)AE - d,ag(d)’A,X)] e~ [

l7112€ - (’YTd)X]
€136 — (€' x)w



= To prove the minimum sample complexity that guarantees convergence, we need
to verify two properties of the initialisation and the neighbourhood respectively.

Proposition (Initialisation Proximity). For any € € (0, 1) we have, with probability

exceeding
2
1—Ce ™ — (mp)~t

for some C, c > 0, that ||y — x*||» < €||x*||> provided n 2 tlog(mp) and
mp Z € 2(n+ m)log (2).

Since ¥q = 1, we also have |7y — d™||lcc < p < 1. Thus (&,70) € Dk, with the
same probability and Kk = \/62 + p2 < V2.

Initialise . ..
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Proposition (Regularity condition in Dy ,). For any é € (0,1),p € [0,1),t > O,
provided p < 1222, n > tlog(mp), p = 62 logm and /mp = 62(n—+ m)log(%),
with probability exceeding

1 — C[me_c‘sz" 4 e Vmp (mp)_t]

for some C, c > 0, we have that for all (§,7) € Dy,

<va(g,q), [ §:§i'> > LnA(¢,v) (Bounded angle)
IVEF(E D)5 < L? A(E,y) (Lipschitz gradient)

form =2(1—90—28) >0, L :=4V2[14+p+ (14 K)||x*|-].

and Converge

Vmp 2 67%(n+m)log (%)

Initialise . ..
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Under the previous conditions, we can bound the error decay of
projected gradient descent when run in a neighbourhood of the
global minimiser.

The projection step serves to ensure theoretically that the
neighbourhood does not change (i.e., for the regularity condition)

Theorem (Provable Convergence to the Exact Solution). Under the conditions of
the previous Propositions we have that, with probability exceeding

| Clme-o e VD 4 ge@mp 4 ()

for some C,c > 0, our descent algorithm with pe = W, iy = ;J,HX% has error
2

decay

> k N
A7) < (1 —nu+ ) (€ + )X 3. (€x. Vi) € Dip

at any iteration k > 0 provided u € (O,T'n/B), T = min{l, IxXlI3/m}. Hence,
Ak, Vi) v 0.



log,p

To test the problem’s phase transition we measure the probability of successful recovery

. d—d*||> [|x—x*]|2 N n
P¢ _:P{max{HHd*HJ x=x] }<C} (x*,d*) € R"x C,,n=2°

[1x*[2

for 256 randomly generated problem instances (per point).

o increases (1073 — 107?)

\ Success

log,p




x with LS,
unstructured d

= An application to computational Fixed signal

(compressive) imaging under
calibration errors yields the
following results for p = 4
snapshots when m = n = 4096.

= The achieved RMSE reads:
max { L2 ool } & —147 38.dB

% with NC-BCP, d with NC-BCP,
unstructured d unstructured d

[[x* ]l
= The algorithm (NC-BCP) scales
gracefully to very large values of
n, contrarily to other

approaches with guarantees.

hi . | i Structured & with NC-BCP, d with NC-BCP,
= This experiment also converges d, p = 9/10 ctructured d ctructured d

with fast random matrices, such
as a subsampled random
convolution A; (not covered by
current theory).




We have shown that a simple application of gradient descent provably solves this bilinear
inverse problem with sample complexity:

vmp 2 (n+m)logn, p 2 logm, n 2 logmp

Proved extensions of this approach:
Blind calibration with known subspace signal/gain models (lower sample complexity).
Stability analysis w.r.t. additive noise.

Better sample complexity is possible (/inear in number of unknowns).

Future developments:

Extension to signal-domain sparsity via hard thresholding: reduces sample complexity
(i.e., blind calibration for compressed sensing); empirically shown, not yet proved.

Extension to related problems: blind calibration with complex gains and sensing
matrices; blind deconvolution.

Finding applications in which blind calibration of a sensor is critical and random
measurements can be physically implemented in the sensing device.
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hank you for your attention.

For any question or suggestion, contact us at:
| laurent.jacques@uclouvain.be
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