The Effect of Atom Replacement Strategies on Dictionary Learning

Paul Irofti

Politehnica University of Bucharest Faculty of Automatic Control and Computers Department of Automatic Control and Systems Engineering Email: paul@irofti.net

International Traveling Workshop on Interactions Between Sparse Models and Technology August 25th, 2016

Sparse Representation (SR)

 $y \approx Dx$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Given a data set $Y \in \mathbb{R}^{p \times m}$ and a sparsity level s, minimize the bivariate function

$$\begin{array}{ll} \underset{D,X}{\text{minimize}} & \phi(D,X) = \|Y - DX\|_F^2 \\ \text{subject to} & \|d_j\|_2 = 1, \ 1 \le j \le n \\ & \|x_i\|_0 \le s, \ 1 \le i \le m, \end{array}$$

where $D \in \mathbb{R}^{p \times n}$ is the dictionary (whose columns are called atoms) and $X \in \mathbb{R}^{n \times m}$ the sparse representations matrix.

Algorithm 1: Dictionary learning – general structure

- 1 Arguments: signal matrix Y, target sparsity s
- 2 Initialize: dictionary D (with normalized atoms)
- 3 for k = 1, 2, ... do
- 4 With fixed D, compute sparse representations X
- 5 With fixed X, update atoms d_j , j = 1 : n

The sparsity pattern provided by step 4 tells us:

- how many times each dictionary atom is used
- popular atoms help with classification and compression
- what about the ones that are rarely or never used?

Goal: Investigate strategies for replacing unused atoms.

K-SVD¹ solves the optimization problem in sequence

$$\min_{d_j, X_{j, \mathcal{I}_j}} \left\| \left(Y_{\mathcal{I}_j} - \sum_{\ell \neq j} d_\ell X_{\ell, \mathcal{I}_\ell} \right) - d_j X_{j, \mathcal{I}_j} \right\|_F^2$$
(2)

where all atoms excepting d_j are fixed.

This is seen as a rank-1 approximation and the solution is given by the singular vectors corresponding to the largest singular value.

- AK-SVD² uses one iteration of the power method
- SGK³ refines only the atom d_j
- NSGK⁴ uses differences with the previous values of D and X

¹Aharon, Elad, and Bruckstein 2006.

²Rubinstein, Zibulevsky, and Elad 2008.

³Sahoo and Makur 2013.

⁴Sadeghi, Babaie-Zadeh, and Jutten 2013.

Comments:

- the dictionary update sequence allows unused atoms to be replaced as soon as we encounter them
- numerical evidence shows that once an atom stops being used it never gets picked up again

Strategies:

- given that we start with a random dictionary, substitute with a new randomly generated column ('Random')
- find the worst represented signal and make it a part of the dictionary ('Worst')
- perform bulk replacement using worst represented signals at the end of the dictionary refinement stage ('Post')

n	Method	Replacement			
		None	Random	Worst	Post
128	K-SVD	0.029406	0.026723	0.019096	0.019355
	AK-SVD	0.029497	0.026876	0.019134	0.019369
	SGK	0.029402	0.026800	0.019079	0.019612
	NSGK	0.025004	0.024707	0.020558	0.019804
256	K-SVD	0.029146	0.023979	0.016773	0.016730
	AK-SVD	0.029291	0.024300	0.016843	0.016858
	SGK	0.029836	0.024201	0.016928	0.016923
	NSGK	0.022099	0.022590	0.020913	0.017563
512	K-SVD	0.025699	0.017744	0.012343	0.011034
	AK-SVD	0.025318	0.018016	0.012436	0.011078
	SGK	0.025617	0.017668	0.012579	0.011072
	NSGK	0.016795	0.016769	0.017951	0.012128

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Error descent averaged over 10 runs for AK-SVD (n = 256)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Results:

- substitution has significant impact on approximation error
- experiments suggest that replacing unused atoms with the worst represented signals is the best approach
- inspired new research: B. Dumitrescu and P. Irofti (2016).
 "Low Dimensional Subspace Finding via Size-Reducing Dictionary Learning". In: 2016 IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6

Inspiration:

- starting from "numerical evidence shows that once an atom stops being used it never gets picked up again"
- lead to "we can just remove the atom and shrink the dictionary"
- but how much can we squeeze the dictionary minimizing the SR complexity without representation quality loss?
- can we apply this to low-rank representation (LRR) through subspace tracking?

Atoms can be reduced indirectly by acting on the representations.

We add a penalty term to Equation (1)

$$\phi(D,X) = \frac{1}{2} \|Y - DX\|_F^2 + \frac{\mu_1}{2} \|X\|_F^2 + \mu_2 \sum_{i=1}^n \|x_i^T\|_2, \quad (3)$$

where x_i^T is the *i*-the row of X.

The first penalty term is a regularization⁵ meant to discourage almost linearly dependent atoms.

The second penalty term is a group sparsity inducer: if the entire row i of X is zero, then atom d_i is unused and can be removed.

⁵Dai, Xu, and Wang 2012.

DL size-reducing AK-SVD

Size-reducing AK-SVD can be used not only for finding an economical number of atoms, but also as an initialization method.

After 20 iterations (100 \rightarrow 54 atoms) switch to plain AK-SVD.

Low-dimensional subspace finding, full data

• p = 50, m = 2000 and true dimension n = 4

- start with 100 atoms, run with s = 8 and s = 4
- dictionary reduced to 4 atoms in less than 10 iterations
- RMSE: 0.271 (s = 8), 0.270 (s = 4), 0.268 (SVD)

Low-dimensional subspace finding, incomplete data

- same dimensions, missing ratio $\rho = 0.5$
- true subspace dimension is reached in about 5 iterations
- dashed lines: error on the available data only

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Questions?