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INTRODUCTION

The advent of new X-ray detection technology
by hybrid pixel cameras working in a photon-
counting mode paves the way to the development
of spectral CT.
This allows to simultaneously separate and recon-
struct the physical components of an object and
finds applications in many areas of imaging.
Our framework allows to iteratively reconstruct
an image from a spectral CT data by setting a poly-
chromatic model that encompasses constraints
(positivity, sparsity) and solving an ill-posed in-
verse and non-convex problem.
Preliminary results are obtained on simulated im-
ages containing four elements (water, Iodine, Yt-

trium and Silver).

Figure 1: From acquisition to resolution.

FORWARD MODEL

Acquisition

A Computerized-Tomography (CT) scan is ob-
tained by shining a X-Ray light modulated by
metallic filters through a rotating object. In the
spectral setting, one explicitly exploits the spec-
tral polychromaticity of the source attenuated
through different metallic filters.
The Beer-Lambert law governs the measurements:

ym =

∫
R+

fm(E)e−
∫
Lp µ(l,E)dldE (1)

where fm(E) = I0(E)Fiq(E)Dr(E) denotes the
total spectral inputs:

• µ(l, E): absorption coefficients of the object
for l on the line of sight Lp (to be found),

• I0: X-ray source’s intensity energy spectrum,
• Fi: filter’s attenuation energy spectrum,
• D: detector’s efficiency energy spectrum.

Absorption maps model

The absorption maps are naturally the sums of the
contributions of each of their components; more-
over the spectral signature is physically indepen-
dent of the spatial location of a component:

µ(l, E) =

K∑
k=1

ak(l)σk(E), (2)

with ak(l) the concentration of component k at
point l, and σk(E) its interaction cross section.
Eq. (1) now reads:

ym =

∫
R+

fm(E)e−
∑K

k=1 σ
k(E)

∫
Lm ak(l)dldE (3)

Discretized forward model

The energy E is discretized in N bins, and the 3D-
volume where the object lives in D voxels. The
forward discretized model reads:

Y = (F � e−SAΣ)1N , (4)

• Y ∈ RM : discretized measured data;
• F ∈ RM×N : dictionary of energy modulat-

ing filters;
• S ∈ RM×D: X-ray Transform operator;
• A ∈ RD×K : concentration matrix: A[d, k] =
ak(vd);

• Σ = (σ1(.), . . . , σK(.))T ∈ RK×N : dictio-
nary of the interaction cross sections of the
K components: Σ[k, n] = σk(En).

(1N = (1, ..., 1)T and � is the Hadamard product.)

METHOD

The measurements Y are noisy realizations of the
perfect measurement described by Eq. (4). The
inverse problem of recovering A, the matrix con-
taining the concentration coefficient maps of the
K components of the object, is solved by minimiz-
ing:

J(A) = D(Y, (F � e−SAΣ)1N ) +R(A) (5)

with

• D(Y, Z) a discrepancy measure (negative
log-likelihood for Gaussian or Poisson
noise),
• R(A) a regularization term that models our

a priori on A.

With R(A) the non-negativity constraint, Eq. (5) is
minimized with a classical trust-region algorithm

Trust-Region Algorithm
Require: A0, ∆0

for k = 1, 2, 3.. do
mk(p) = J(Ak) + gTk p+ 1

2p
TBkp . Quadratic model.

pk ← ArgMin
‖p‖<∆k

mk(p) . Step calculation.

RK ←
f(Xk)−f(Xk+pk)

mk(0)−mk(pk)
. Ratio actual/predicted reduction.

ifRkacceptable then
Ak+1 ← Ak + pk
Update∆k+1

else
Reduce∆k+1

end if
end for
returnAk

RESULTS

We have generated a contrast phantom made of
one large cylinder filled with water and six smaller
tubes filled with contrast agents. Three tubes con-
tain Yttrium at different concentrations, two con-
tain Silver and one contains Iodine (K = 4).

We have simulated a set of tomographic scans

smeared by Gaussian noise with 5 different
metallic filters Fi, which are ideal pass-band fil-
ters around the discontinuities specifying the con-
trast agents. The discretized sizes are M = 1440,
D = 256, and N = 43.

We have then minimized Eq. (5) with the non-
negativity constraint using a trust-region algo-
rithm and report the results obtained for 10
realizations of noise. The figures show that
the low-rank model allows to reconstruct sim-
ple maps from non-linear polychromatic measure-
ments. The output SNR evolves linearly with the
input SNR.

CONCLUSION

We have established a new flexible model for spec-
tral CT reconstruction. Results obtained with a
classical Trust-Region approach on simulated data

pave the way to future developments including
sparsity constraints.


