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Goal of the game

Summary

Interpolate data points p,,,, on a manifold M

with a smooth (C') piecewise Bézier surface

5 . [O, M] X [O, N] — M (tl,tg) — ,B(tl — m,ty — n,bm”) Advantage: | Goal

with m = |#; | and n = |to] L ow Find the control

points {02} C M
, . . space of the Bézier surface
Unknowns: 12 control points b™" = {0/M""} C M per patch. B such that B is the
Tool: cubic Bézier surfaces patched together | ; natural interpolating
time cubic B-spline when

B(t1,t2,b) = av(b, (wi;(t1,t2))] complexity! M = R". This
Convex/Karcher mean <~ "~ - Bernstein ensures ‘5 to
polynomials S
minimize 1ts mean
Smoothness constraint: over |0, M] x |0, V], surface of minimial square acceleration.
mean square acceleration. If M = R", ‘5 is a natural cubic B-spline
B = Zm,n Amn B(t1 — m)B(ta — n). e.q., M is the closed shape manifold
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Step 1: [Euclidean case| Find control points for curves (1D) .

space

Find b"" to interpolate {p,,} with a piecewise Bézier curve 5 = 3(t — m,b") with m = |t]
% is a natural cubic B-spline Under interpolation constraints, The control points b are

B = Z%:_ol amB(t —m) we find the B-spline coefficients a.,,. convex combinations of . With data points

(smoothness constraint). (Pmn) compute &y,
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Step 2: |Euclidean case| Use step 1 to find control points for surfaces (2D)

With &,,, compute
Q. 1N direction to.

Find b""" to interpolate {p,,,}. Use step 1 twice to compute the coefficients a,,,

The surface ‘5 is a tensorized version of the curve in step 1. The control points b”'" are
We use step 1 in direction ¢t then t5 to obtain the coeflicients o, . convex combinations of o,,,. Project
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Step 3: Generalize to manifolds
The problem is invariant to translations on R". M = S0(3)
1. Shift all data points {p,., } involved into the B
computation of bij to closest d.ata.pomt Dref- = s @ 9 @ % ‘ » Reconstruct each
2. Interpret p,,,,, — Prer s a projection of p,,, € ey _ Bézier surface with
M into the (Euclidean) tangent space of pief. 5 | RX: O B B ‘ @ ® ¢

weighted averaging
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as the Karcher mean

Cmn M U, ' LN Q & ¢ ¢ 4% (generalization of Rthe
convex mean on IR").
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B = av[b™", (w;;)]

on manifold

S =A{(t1,t2) : t1 = 1 + cos(3nta)}
pmn Smooth surface on the sphere Smooth surface on M = SO(3)
iJ interpolating the data points (red). interpolating rigid rotations (red).
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