The best of both worlds: synthesis-based acceleration for physics-driven cosparse regularization

Srđan Kitić Technicolor R&I, Rennes.

iTwist 2016, Aalborg

with Nancy Bertin and Rémi Gribonval PANAMA team, Inria/IRISA, Rennes

Table of contents

Physics-driven inverse problems

The best of both worlds

4 Numerical results

Conclusion

Digression: cosparse and sparse data models

Sparse analysis (cosparse)

 $\mathbf{x}_a \in \cup_{\#\Lambda \geq \ell} \mathtt{null}(\mathbf{A}_\Lambda)$

- "Descriptive" model.
- ${\ensuremath{\bullet}}$ The analysis operator: $\mathbf{A}\in \mathbb{R}^{p\times n}, p\geq n$
- Recovering the *cosupport* Λ :

 $\min_{\mathbf{x}_a} \|\mathbf{A}\mathbf{x}_a\|_0 \text{ subject to } \mathbf{M}\mathbf{x}_a \approx \mathbf{y}$

• Tractable approximations: convex relaxations, GAP, AIHT, ACoSaMP...

Sparse synthesis

 $\mathbf{x}_s \in \cup_{\#\Gamma \leq \mathsf{k}} \mathtt{range}(\mathbf{D}_{\Gamma})$

- "Constructive" model.
- $\bullet~$ The (synthesis) dictionary: $\mathbf{D} \in \mathbb{R}^{n \times d}, n \leq d$
- Recovering the support Γ:

 $\min_{\mathbf{x}_s} \|\mathbf{x}_s\|_0 \text{ subject to } \mathbf{MDx}_s \approx \mathbf{y}$

• Tractable approximations: convex relaxations, MP, OMP, IHT, CoSaMP...

Digression: cosparse and sparse data models

Sparse analysis (cosparse)

 $\mathbf{x}_a \in \cup_{\#\Lambda \geq \ell} \mathtt{null}(\mathbf{A}_\Lambda)$

- "Descriptive" model.
- \bullet The analysis operator: $\mathbf{A} \in \mathbb{R}^{p \times n}, p \geq n$
- Recovering the cosupport Λ:

 $\min_{\mathbf{x}_a} \|\mathbf{A}\mathbf{x}_a\|_0 \text{ subject to } \mathbf{M}\mathbf{x}_a \approx \mathbf{y}$

 Tractable approximations: convex relaxations, GAP, AIHT, ACoSaMP...

Sparse synthesis

 $\mathbf{x}_s \in \cup_{\#\Gamma \leq \mathsf{k}} \mathtt{range}(\mathbf{D}_{\Gamma})$

- "Constructive" model.
- $\bullet~$ The (synthesis) dictionary: $\mathbf{D} \in \mathbb{R}^{n \times d}, n \leq d$
- Recovering the support Γ:

 $\min_{\mathbf{x}_s} \|\mathbf{x}_s\|_0 \text{ subject to } \mathbf{MDx}_s \approx \mathbf{y}$

 Tractable approximations: convex relaxations, MP, OMP, IHT, CoSaMP...

Digression: cosparse and sparse data models

Sparse analysis (cosparse)

 $\mathbf{x}_a \in \cup_{\#\Lambda \ge \ell} \mathtt{null}(\mathbf{A}_\Lambda)$

- "Descriptive" model.
- $\bullet~$ The analysis operator: $\mathbf{A} \in \mathbb{R}^{p \times n}, p \geq n$
- Recovering the cosupport Λ:

 $\min_{\mathbf{x}_a} \|\mathbf{A}\mathbf{x}_a\|_0 \text{ subject to } \mathbf{M}\mathbf{x}_a \approx \mathbf{y}$

• Tractable approximations: convex relaxations, GAP, AIHT, ACoSaMP...

Sparse synthesis

 $\mathbf{x}_s \in \cup_{\#\Gamma \leq \mathsf{k}} \mathtt{range}(\mathbf{D}_{\Gamma})$

- "Constructive" model.
- $\bullet~$ The (synthesis) dictionary: $\mathbf{D} \in \mathbb{R}^{n \times d}, n \leq d$
- Recovering the support Γ:

 $\min_{\mathbf{x}_s} \, \|\mathbf{x}_s\|_0 \, \, \text{subject to} \, \, \mathbf{MDx}_s \approx \mathbf{y}$

• Tractable approximations: convex relaxations, MP, OMP, IHT, CoSaMP...

Equivalent only if $\mathbf{D} = \mathbf{A}^{-1}$.

Digression: cosparse and sparse data models

Sparse analysis (cosparse)

 $\mathbf{x}_a \in \cup_{\#\Lambda \ge \ell} \mathtt{null}(\mathbf{A}_\Lambda)$

- "Descriptive" model.
- $\bullet~$ The analysis operator: $\mathbf{A} \in \mathbb{R}^{p \times n}, p \geq n$
- Recovering the cosupport Λ :

 $\min_{\mathbf{x}_a} \|\mathbf{A}\mathbf{x}_a\|_0 \text{ subject to } \mathbf{M}\mathbf{x}_a \approx \mathbf{y}$

 Tractable approximations: convex relaxations, GAP, AIHT, ACoSaMP...

Analysis BP

 $\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\|_1 \text{ subject to } \mathbf{y} = \mathbf{M}\mathbf{x}$

Sparse synthesis

$$\mathbf{x}_s \in \cup_{\#\Gamma \leq \mathsf{k}} \mathtt{range}(\mathbf{D}_{\Gamma})$$

- "Constructive" model.
- $\bullet~$ The (synthesis) dictionary: $\mathbf{D} \in \mathbb{R}^{n \times d}, n \leq d$
- Recovering the support Γ:

 $\min_{\mathbf{x}_s} \|\mathbf{x}_s\|_0 \text{ subject to } \mathbf{MDx}_s \approx \mathbf{y}$

• Tractable approximations: convex relaxations, MP, OMP, IHT, CoSaMP...

Synthesis BP $\min_{\mathbf{z}} \|\mathbf{z}\|_1$ subject to $\mathbf{y} = \mathbf{MDz}$ technicolor

Physics-driven linear inverse problem

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \mathbf{y} = M(x) + \mathbf{e}$$

x : a physical field

- M: a spatial subsampling operator
- \mathbf{e} : an instrumental/environmental noise
- Goal: find signal x given array measurements y.
- "Passive" mode: <u>no control</u> over the generative process.
- Irreversible without a model of x.

Physics-driven linear inverse problem

Signal x is governed by a linear PDE, e.g.:

- Electrodynamics, optics: Maxwell's equations
- Sound propagation: the acoustic wave equation
- Thermodynamics: heat equation
- Electrostatics, mechanics: Poisson's equation, Laplace equation
- Nuclear magnetic resonance: Bloch's equations
- Finance: Black-Scholes equation etc.

The best of both worlds

Physics-driven signal representations

Linear PDE ($\boldsymbol{\omega} \in \Omega$):

$$\sum_{|\mathbf{k}| \le \xi} c(\mathbf{k}, \boldsymbol{\omega}) D^{\mathbf{k}} x(\boldsymbol{\omega}) = z(\boldsymbol{\omega})$$

Superposition principle:

$$x(\boldsymbol{\omega}) = \int_{\Omega} g(\boldsymbol{\omega}, \mathbf{s}) \delta(\boldsymbol{\omega} - \mathbf{s}) z(\mathbf{s}) d\mathbf{s}$$

The Green's function: $Ag(\boldsymbol{\omega}, \mathbf{s}) = \delta(\mathbf{s} - \boldsymbol{\omega})$

$$\begin{aligned} x(\boldsymbol{\omega}) = Dz(\boldsymbol{\omega}) \\ \downarrow \\ \mathbf{x} = \mathbf{Dz}. \end{aligned}$$

Very often: $\mathbf{s} \in A \Leftrightarrow$ sources, sinks...

$$z(\boldsymbol{\omega}) = \sum_{\mathbf{s}} b(\mathbf{s})\delta(\boldsymbol{\omega} - \mathbf{s})$$

 \mathbf{z} is sparse, \mathbf{x} is cosparse!

The best of both worlds

Physics-driven signal representations

Linear PDE ($\boldsymbol{\omega} \in \Omega$):

$$\sum_{|\mathbf{k}| \le \xi} c(\mathbf{k}, \boldsymbol{\omega}) D^{\mathbf{k}} x(\boldsymbol{\omega}) = z(\boldsymbol{\omega})$$

Superposition principle:

$$x(\boldsymbol{\omega}) = \int_{\Omega} g(\boldsymbol{\omega}, \mathbf{s}) \delta(\boldsymbol{\omega} - \mathbf{s}) z(\mathbf{s}) d\mathbf{s}$$

The Green's function: $Ag(\boldsymbol{\omega},\mathbf{s})=\delta(\mathbf{s}-\boldsymbol{\omega})$

$$x(\boldsymbol{\omega}) = Dz(\boldsymbol{\omega})$$
$$\downarrow$$
$$\mathbf{x} = \mathbf{D}\mathbf{z}.$$

Very often: $\mathbf{s} \in A \Leftrightarrow$ sources, sinks...

$$z(\boldsymbol{\omega}) = \sum_{\mathbf{s}} b(\mathbf{s})\delta(\boldsymbol{\omega} - \mathbf{s})$$

 \mathbf{z} is sparse, \mathbf{x} is cosparse!

The best of both worlds

Physics-driven signal representations

Linear PDE ($\boldsymbol{\omega} \in \Omega$):

$$\sum_{|\mathbf{k}| \leq \xi} c(\mathbf{k}, \boldsymbol{\omega}) D^{\mathbf{k}} x(\boldsymbol{\omega}) = z(\boldsymbol{\omega})$$

including boundary conditions!
$$Ax(oldsymbol{\omega})=z(oldsymbol{\omega})$$
 \downarrow
 $\mathbf{Ax}=\mathbf{z}$

Superposition principle:

$$x(\boldsymbol{\omega}) = \int_{\Omega} g(\boldsymbol{\omega}, \mathbf{s}) \delta(\boldsymbol{\omega} - \mathbf{s}) z(\mathbf{s}) d\mathbf{s}$$

The Green's function: $Ag(\boldsymbol{\omega},\mathbf{s})=\delta(\mathbf{s}-\boldsymbol{\omega})$

$$x(\boldsymbol{\omega}) = Dz(\boldsymbol{\omega})$$
$$\downarrow$$
$$\mathbf{x} = \mathbf{D}z.$$

Very often: $\mathbf{s} \in A \Leftrightarrow$ sources, sinks...

$$z(\boldsymbol{\omega}) = \sum_{\mathbf{s}} b(\mathbf{s}) \delta(\boldsymbol{\omega} - \mathbf{s})$$

 ${f z}$ is sparse, ${f x}$ is cosparse!

he best of both world

Physics-driven signal representations

 ${\bf A}$ encodes a PDE:

- Discretization locally supported: $nnz(\mathbf{A}) = O(n)$
- Generally, A unbounded, thus $\|\mathbf{A}\|_2 \xrightarrow{\mathbf{n} \to \infty} \infty.$
- If $\mathbf{A} = \tau(\mathbf{n})\mathbf{\bar{A}}$, with $\mathbf{\bar{A}}_{i,j}$ independent of n, then: $\|\mathbf{\bar{A}}\|_2^2 \leq \|\mathbf{\bar{A}}\|_1 \|\mathbf{\bar{A}}\|_{\infty} < \infty.$

D encodes impulse respones (K. et al., 2016):

- Discretized eigenfunctions of A (generally dense): $nnz(D) = O(n^2)$.
- Fast multiplication in *restricted regimes*.
- $\|\mathbf{D}\|_2$ also generally unbounded (unless dom $(D) \subseteq H^k(\Omega)$): $\|\mathbf{D}\|_2 \xrightarrow{n \to \infty} \infty$.

Physics-driven basis pursuits

 $\min_{\mathbf{z}} \|\mathbf{z}\|_1 \text{ subject to } \mathbf{y} = \mathbf{M}\mathbf{D}\mathbf{z}$

Main difficulties:

- Potentially huge number of variables.
- Condition number increases with problem size.
- Non-smooth optimization, no strict convexity.
- Composite linear term in Analysis BP.

Apply the preconditioned ADMM algorithm (Chambolle and Pock, 2011).

The Chambolle-Pock algorithm

• Solves a generic (convex) saddle-point problem:

 $\min_{\mathbf{v}} f_1(\mathbf{K}\mathbf{v}) + f_2(\mathbf{v}) = \min_{\mathbf{v}} \max_{\mathbf{b}} \langle \mathbf{K}\mathbf{v}, \mathbf{b} \rangle - f_1^*(\mathbf{b}) + f_2(\mathbf{v}) = \min_{\mathbf{v}} \max_{\mathbf{b}} \mathcal{L}(\mathbf{v}, \mathbf{b})$

• Provided $\mu\sigma \|\mathbf{K}\|_2^2 < 1$, iterate:

$$\begin{split} \mathbf{b}^{(i+1)} &= \operatorname{prox}_{\sigma f_1^*} \left(\mathbf{b}^{(i)} + \sigma \mathbf{K} \bar{\mathbf{v}}^{(i)} \right) \\ \mathbf{v}^{(i+1)} &= \operatorname{prox}_{\mu f_2} \left(\mathbf{v}^{(i)} - \mu \mathbf{K}^{\mathsf{H}} \mathbf{b}^{(i+1)} \right) \\ \bar{\mathbf{v}}^{(i+1)} &= \mathbf{v}^{(i+1)} + \theta \left(\mathbf{v}^{(i+1)} - \mathbf{v}^{(i)} \right) \end{split}$$

• Optimal asymptotic rate (Nesterov, 2005) ($\mathbf{v}^*, \mathbf{b}^*$ fixed points):

$$\begin{split} \mathcal{L}(\mathbf{v}^{(k)}, \mathbf{b}^*) &- \mathcal{L}(\mathbf{v}^*, \mathbf{b}^{(k)}) \\ &\leq \frac{1}{k} \left(\frac{1}{\mu} \| \mathbf{v}^* - \mathbf{v}^{(0)} \|_2^2 + \frac{1}{\sigma} \| \mathbf{b}^* - \mathbf{b}^{(0)} \|_2^2 - \langle \mathbf{K} (\mathbf{v}^* - \mathbf{v}^{(0)}), \mathbf{b}^* - \mathbf{b}^{(0)} \rangle \right) \end{split}$$

Convergence rate

 $O(\|\mathbf{K}\|_2^2/k)$, dependent on $\|\mathbf{v}^* - \mathbf{v}^{(0)}\|_2$.

The Chambolle-Pock algorithm

• Solves a generic (convex) saddle-point problem:

 $\min_{\mathbf{v}} f_1(\mathbf{K}\mathbf{v}) + f_2(\mathbf{v}) = \min_{\mathbf{v}} \max_{\mathbf{b}} \langle \mathbf{K}\mathbf{v}, \mathbf{b} \rangle - f_1^*(\mathbf{b}) + f_2(\mathbf{v}) = \min_{\mathbf{v}} \max_{\mathbf{b}} \mathcal{L}(\mathbf{v}, \mathbf{b})$

• Provided $\mu\sigma \|\mathbf{K}\|_2^2 < 1$, iterate:

$$\begin{split} \mathbf{b}^{(i+1)} &= \text{prox}_{\sigma f_1^*} \left(\mathbf{b}^{(i)} + \sigma \mathbf{K} \bar{\mathbf{v}}^{(i)} \right) \\ \mathbf{v}^{(i+1)} &= \text{prox}_{\mu f_2} \left(\mathbf{v}^{(i)} - \mu \mathbf{K}^{\mathsf{H}} \mathbf{b}^{(i+1)} \right) \\ \bar{\mathbf{v}}^{(i+1)} &= \mathbf{v}^{(i+1)} + \theta \left(\mathbf{v}^{(i+1)} - \mathbf{v}^{(i)} \right) \end{split}$$

• Optimal asymptotic rate (Nesterov, 2005) ($\mathbf{v}^*, \mathbf{b}^*$ fixed points):

$$\begin{split} \mathcal{L}(\mathbf{v}^{(k)}, \mathbf{b}^*) &- \mathcal{L}(\mathbf{v}^*, \mathbf{b}^{(k)}) \\ &\leq \frac{1}{k} \left(\frac{1}{\mu} \| \mathbf{v}^* - \mathbf{v}^{(0)} \|_2^2 + \frac{1}{\sigma} \| \mathbf{b}^* - \mathbf{b}^{(0)} \|_2^2 - \langle \mathbf{K} (\mathbf{v}^* - \mathbf{v}^{(0)}), \mathbf{b}^* - \mathbf{b}^{(0)} \rangle \right) \end{split}$$

Convergence<u>rate</u>

 $O(\|\mathbf{K}\|_2^2/\mathsf{k})$, dependent on $\|\mathbf{v}^* - \mathbf{v}^{(0)}\|_2$.

The Chambolle-Pock algorithm

• Solves a generic (convex) saddle-point problem:

 $\min_{\mathbf{v}} f_1(\mathbf{K}\mathbf{v}) + f_2(\mathbf{v}) = \min_{\mathbf{v}} \max_{\mathbf{b}} \langle \mathbf{K}\mathbf{v}, \mathbf{b} \rangle - f_1^*(\mathbf{b}) + f_2(\mathbf{v}) = \min_{\mathbf{v}} \max_{\mathbf{b}} \mathcal{L}(\mathbf{v}, \mathbf{b})$

• Provided $\mu\sigma \|\mathbf{K}\|_2^2 < 1$, iterate:

$$\begin{split} \mathbf{b}^{(i+1)} &= \operatorname{prox}_{\sigma f_1^*} \left(\mathbf{b}^{(i)} + \sigma \mathbf{K} \bar{\mathbf{v}}^{(i)} \right) \\ \mathbf{v}^{(i+1)} &= \operatorname{prox}_{\mu f_2} \left(\mathbf{v}^{(i)} - \mu \mathbf{K}^{\mathsf{H}} \mathbf{b}^{(i+1)} \right) \\ \bar{\mathbf{v}}^{(i+1)} &= \mathbf{v}^{(i+1)} + \theta \left(\mathbf{v}^{(i+1)} - \mathbf{v}^{(i)} \right) \end{split}$$

• Optimal asymptotic rate (Nesterov, 2005) ($\mathbf{v}^*, \mathbf{b}^*$ fixed points):

$$\begin{split} \mathcal{L}(\mathbf{v}^{(k)}, \mathbf{b}^*) &- \mathcal{L}(\mathbf{v}^*, \mathbf{b}^{(k)}) \\ &\leq \frac{1}{\mathsf{k}} \left(\frac{1}{\mu} \| \mathbf{v}^* - \mathbf{v}^{(0)} \|_2^2 + \frac{1}{\sigma} \| \mathbf{b}^* - \mathbf{b}^{(0)} \|_2^2 - \langle \mathbf{K}(\mathbf{v}^* - \mathbf{v}^{(0)}), \mathbf{b}^* - \mathbf{b}^{(0)} \rangle \right) \end{split}$$

Convergence rate

 $O(\|\mathbf{K}\|_2^2/k)$, dependent on $\|\mathbf{v}^* - \mathbf{v}^{(0)}\|_2$.

technicolor

ne best of both worlds

Conclusion

CP algorithm and physics-driven BP regularization

Synthesis

 $\min_{\mathbf{z}} \max_{\mathbf{h}} \left\langle \mathbf{M} \mathbf{D} \mathbf{z} - \mathbf{y}, \mathbf{h} \right\rangle + \|\mathbf{z}\|_1$

- X Iteration / storage cost: O(mn)Convergence rate $\propto ||\mathbf{MD}||_2^{-2}$: $||\mathbf{MD}||_2 \xrightarrow{m \to n} ||\mathbf{D}||_2$
- \checkmark Initialization: $\mathbf{z}^{(0)} = \mathbf{0}$

 $\|\mathbf{z}^* - \mathbf{z}^{(0)}\|_2$ small for sparse \mathbf{z}^* .

Analysis

$$\min_{\mathbf{x}} \max_{\mathbf{q}} \left\langle \mathbf{A}\mathbf{x}, \mathbf{q} \right\rangle - \|\mathbf{q}\|_{1}^{*} + \chi_{\mathbf{M} \cdot = \mathbf{y}} \left(\mathbf{x} \right)$$

Iteration / storage cost: O(n)

Convergence rate $\propto \|\mathbf{A}\|_2^{-2}$ or $\propto \|\bar{\mathbf{A}}\|_2^{-2}$:

 $\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x}\|_{1} \text{ subject to } \mathbf{y} = \mathbf{M}\mathbf{x} \\ \Leftrightarrow \\ \min_{\mathbf{x}} \|\bar{\mathbf{A}}\mathbf{x}\|_{1} \text{ subject to } \mathbf{y} = \mathbf{M}\mathbf{x} \\ \text{Initialization: } \mathbf{x}^{(0)} = ?$

CP algorithm and physics-driven BP regularization

Synthesis	Analysis		
$\min_{\mathbf{z}} \max_{\mathbf{h}} \left< \mathbf{M} \mathbf{D} \mathbf{z} - \mathbf{y}, \mathbf{h} \right> + \ \mathbf{z} \ _1$	$\min_{\mathbf{x}} \max_{\mathbf{q}} \left\langle \mathbf{A} \mathbf{x}, \mathbf{q} \right\rangle - \ \mathbf{q}\ _{1}^{*} + \chi_{\mathbf{M} \cdot = \mathbf{y}} \left(\mathbf{x} \right)$		
X Iteration / storage cost: $O(mn)$ X Convergence rate $\propto \mathbf{MD} _2^{-2}$: $ \mathbf{MD} _2 \xrightarrow{m \to n} \mathbf{D} _2$	✓ Iteration / storage cost: $O(n)$ ✓ Convergence rate $\propto \ \mathbf{A}\ _2^{-2}$ or $\propto \ \bar{\mathbf{A}}\ _2^{-2}$: min _{x} $\ \mathbf{A}\mathbf{x}\ _1$ subject to $\mathbf{y} = \mathbf{M}\mathbf{x}$		
\checkmark Initialization: $\mathbf{z}^{(0)}=0$	$\Leftrightarrow \\ \min_{\mathbf{x}} \ \bar{\mathbf{A}}\mathbf{x}\ _1 \text{ subject to } \mathbf{y} = \mathbf{M}\mathbf{x}$		

$$|\mathbf{z}^* - \mathbf{z}^{(0)}||_2$$
 small for sparse \mathbf{z}^* .

X Initialization: $\mathbf{x}^{(0)} = ?$

The best of both worlds

Multiscale optimization:

- \blacksquare Build a multiscale pyramid: $\mathsf{n}_0 < \mathsf{n}_1 < \mathsf{n}_2 < \ldots \mathsf{n}_r \ldots < \mathsf{n}$
- 2 Solve the synthesis BP at r = 0 with $\mathbf{z}_0^{(0)} = \mathbf{0}$ and compute $\mathbf{x}_0 = \mathbf{D}_0 \mathbf{z}_0$
- (3) Interpolate \mathbf{x}_{r} to $\tilde{\mathbf{x}}_{\mathsf{r}+1}$
- (a) Solve the analysis CP with $\mathbf{x}_{r+1}^{(0)} = \tilde{\mathbf{x}}_{r+1}$ to obtain \mathbf{x}_{r+1}
- $\ \ \, \textbf{if $n_{r+1} < n$, go to 3.} }$

Advantages:

- Exploits sparse initialization.
- Linear per-iteration and memory cost (except at the coarsest level).
- Convergence rate improved due to $\|\mathbf{A}_r\|_2 < \|\mathbf{A}_{r+1}\|_2$.
- Potential speed-up with m increasing (Oymak et al., 2015).

The best of both worlds

Multiscale optimization:

- 0 Build a multiscale pyramid: $\mathsf{n}_0 < \mathsf{n}_1 < \mathsf{n}_2 < \ldots \mathsf{n}_r \ldots < \mathsf{n}$
- 2 Solve the synthesis BP at r = 0 with $\mathbf{z}_0^{(0)} = \mathbf{0}$ and compute $\mathbf{x}_0 = \mathbf{D}_0 \mathbf{z}_0$
- 3 Interpolate \mathbf{x}_{r} to $\tilde{\mathbf{x}}_{\mathsf{r}+1}$
- (a) Solve the analysis CP with $\mathbf{x}_{r+1}^{(0)} = \tilde{\mathbf{x}}_{r+1}$ to obtain \mathbf{x}_{r+1}
- $\ \ \, \textbf{if $n_{r+1} < n$, go to 3.} }$

Advantages:

- Exploits sparse initialization.
- Linear per-iteration and memory cost (except at the coarsest level).
- \bullet Convergence rate improved due to $\|\mathbf{A}_r\|_2 < \|\mathbf{A}_{r+1}\|_2.$
- Potential speed-up with m increasing (Oymak et al., 2015).

Physics-driven inverse problems	Practical issues	The best of both worlds	Numerical results	Conclusion
Numerical results				

"Simple" problem: $\frac{d^2}{dr^2}x = z$, $\mathbf{r} \in [0, \phi]$, $x(0) = x(\phi) = 0$

"Simple" problem:
$$\frac{d^2}{dr^2}x = z$$
, $r \in [0, \phi]$, $x(0) = x(\phi) = 0$

Synthesis with random initialization

Synthesis with all-zero initialization - but we cannot solve it in the general case!

Analysis with random initialization

Analysis with all-zero initialization

"Simple" problem:
$$\frac{d^2}{dr^2}x = z$$
, $r \in [0, \phi]$, $x(0) = x(\phi) = 0$

Analysis with *coarse* synthesis initialization: $n_1 = 250$, n = 1000

"Simple" problem:
$$\frac{d^2}{dr^2}x = z$$
, $r \in [0, \phi]$, $x(0) = x(\phi) = 0$

technicolor

- n = 10000, k = 5, varying m.
- Three experimental regimes:
 - Single (large) scale analysis,
 - Pive-scale pure analysis,
 - Five-scale: coarse synthesis + four-scale analysis.
- Relative error criterion: $\epsilon = \|\mathbf{x}^* \hat{\mathbf{x}}\|^2 / \|\mathbf{x}^*\|^2$
- Fixed iteration budget:
 - Iterations for the single scale: N
 - Iterations for the multiscale: $\sum N_{\rm r} = N$.
 - Far fewer computations with multiscale, since $N_r > N_{r+1}$, $r = 1 \dots 5$.

 \boldsymbol{N} : total iteration budget

FEM multiscale: $n_1 < 200, 9 \cdot 10^3 < n$.

Off-the-grid measurements : calibration error. Off-the-grid sources : "support leakage".

The best of both worlds

Numerical results

Conclusion

Numerical results

$$\begin{split} x(\mathbf{r}_1) &= 1, \ \mathbf{r}_1 \in \partial \Omega_1 \quad \frac{\partial}{\partial \vec{n}} x(\mathbf{r}_2) = 0, \ \mathbf{r}_2 \in \partial \Omega_2 \\ \mathbf{k} &= 1, \ N = 2000, \mathbf{m} = 25 \end{split}$$

The best of both worlds

Numerical results

Conclusion

Numerical results

 $x(\mathbf{r}) = 0, \ \mathbf{r} \in \partial \Omega$

k = 2, N = 2000, m = 100

Conclusion

- Low-cost cosparse multiscale optimization.
- Sparse solutions: synthesis-based initialization is simple and effective.
- Applicable to variety of physics-driven problems.
- Generalization to other types of algorithms/regularizers.
- Significance of interpolation/discretization method?
- CP stepsize selection?
- Verification on the real-world problems/data.

Thank you!

References

(Chambolle and Pock, 2011) Chambolle, A. and Pock, T. (2011).

A first-order primal-dual algorithm for convex problems with applications to imaging. *Journal of Mathematical Imaging and Vision*, 40(1):120–145.

(K. et al., 2016) K., S., Albera, L., Bertin, N., and Gribonval, R. (2016). Physics-driven inverse problems made tractable with cosparse regularization. *IEEE Transactions on Signal Processing*, 64(2):335–348.

(Nesterov, 2005) Nesterov, Y. (2005). Smooth minimization of non-smooth functions. Mathematical programming, 103(1):127–152.

(Oymak et al., 2015) Oymak, S., Recht, B., and Soltanolkotabi, M. (2015). Sharp time-data tradeoffs for linear inverse problems. *arXiv preprint arXiv:1507.04793.*

