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Digression: cosparse and sparse data models

Sparse analysis (cosparse)

xa ∈ ∪#Λ≥`null(AΛ)

“Descriptive” model.

The analysis operator: A ∈ Rp×n, p ≥ n

Recovering the cosupport Λ:

min
xa
‖Axa‖0 subject to Mxa ≈ y

Tractable approximations: convex
relaxations, GAP, AIHT, ACoSaMP...

Sparse synthesis

xs ∈ ∪#Γ≤krange(DΓ)

“Constructive” model.

The (synthesis) dictionary: D ∈ Rn×d, n ≤ d

Recovering the support Γ:

min
xs
‖xs‖0 subject to MDxs ≈ y

Tractable approximations: convex relaxations,
MP, OMP, IHT, CoSaMP...
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Equivalent only if D = A−1.
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Analysis BP

min
x
‖Ax‖1 subject to y = Mx

Synthesis BP

min
z
‖z‖1 subject to y = MDz
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Physics-driven linear inverse problem


y1
y2
...
ym

 = y = M(x) + e

x : a physical field

M : a spatial subsampling operator

e : an instrumental/environmental noise

Goal: find signal x given array measurements y.

“Passive” mode: no control over the generative process.

Irreversible without a model of x.
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Physics-driven linear inverse problem

Signal x is governed by a linear PDE, e.g.:

Electrodynamics, optics: Maxwell’s equations

Sound propagation: the acoustic wave equation

Thermodynamics: heat equation

Electrostatics, mechanics: Poisson’s equation, Laplace equation

Nuclear magnetic resonance: Bloch’s equations

Finance: Black-Scholes equation etc.
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Physics-driven signal representations

Linear PDE (ω ∈ Ω):

∑
|k|≤ξ

c(k,ω)Dkx(ω) = z(ω)

including boundary conditions!

Ax(ω) = z(ω)

↓
Ax = z

Superposition principle:

x(ω) =

∫
Ω
g(ω, s)δ(ω − s)z(s)ds

The Green’s function: Ag(ω, s) = δ(s− ω)

x(ω) =Dz(ω)

↓
x =Dz.

Very often: s ∈ A⇔ sources, sinks...

z(ω) =
∑
s

b(s)δ(ω − s)

z is sparse, x is cosparse!
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Physics-driven signal representations

A encodes a PDE:

Discretization locally supported:
nnz(A) = O(n)

Generally, A unbounded, thus
‖A‖2

n→∞−−−−→∞.

If A = τ(n)Ā, with Āi,j independent of
n, then:
‖Ā‖22 ≤ ‖Ā‖1‖Ā‖∞ <∞.

D encodes impulse respones
[K. et al., 2016]:

Discretized eigenfunctions of A
(generally dense): nnz(D) = O(n2).

Fast multiplication in restricted regimes.

‖D‖2 also generally unbounded
(unless dom(D) ⊆ Hk(Ω)):
‖D‖2

n→∞−−−−→∞.
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Physics-driven basis pursuits

Analysis BP

min
x
‖Ax‖1 subject to y = Mx

Synthesis BP

min
z
‖z‖1 subject to y = MDz

Main difficulties:

Potentially huge number of variables.

Condition number increases with problem size.

Non-smooth optimization, no strict convexity.

Composite linear term in Analysis BP.

Apply the preconditioned ADMM algorithm [Chambolle and Pock, 2011].
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The Chambolle-Pock algorithm

Solves a generic (convex) saddle-point problem:

min
v

f1(Kv) + f2(v) = min
v

max
b
〈Kv,b〉 − f∗1 (b) + f2(v) = min

v
max

b
L(v,b)

Provided µσ‖K‖22 < 1, iterate:

b(i+1) = proxσf∗1

(
b(i) + σKv̄(i)

)
v(i+1) = proxµf2

(
v(i) − µKHb(i+1)

)
v̄(i+1) = v(i+1) + θ

(
v(i+1) − v(i)

)
Optimal asymptotic rate [Nesterov, 2005] (v∗,b∗ fixed points):

L(v(k),b∗)− L(v∗,b(k))

≤
1

k

(
1

µ
‖v∗ − v(0)‖22 +

1

σ
‖b∗ − b(0)‖22 − 〈K(v∗ − v(0)),b∗ − b(0)〉

)

Convergence rate

O(‖K‖22/k), dependent on ‖v∗ − v(0)‖2.
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CP algorithm and physics-driven BP regularization

Synthesis

min
z

max
h
〈MDz− y,h〉+ ‖z‖1

7 Iteration / storage cost: O(mn)

7 Convergence rate ∝ ‖MD‖−2
2 :

‖MD‖2
m→n−−−→ ‖D‖2

3 Initialization: z(0) = 0

‖z∗ − z(0)‖2 small for sparse z∗.

Analysis

min
x

max
q
〈Ax,q〉 − ‖q‖∗1 + χM·=y (x)

3 Iteration / storage cost: O(n)

3 Convergence rate ∝ ‖A‖−2
2 or ∝ ‖Ā‖−2

2 :

min x ‖Ax‖1 subject to y = Mx
⇔
min x ‖Āx‖1 subject to y = Mx

7 Initialization: x(0) = ?
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The best of both worlds

Multiscale optimization:
1 Build a multiscale pyramid: n0 < n1 < n2 < . . . nr . . . < n

2 Solve the synthesis BP at r = 0 with z
(0)
0 = 0 and compute x0 = D0z0

3 Interpolate xr to x̃r+1

4 Solve the analysis CP with x
(0)
r+1 = x̃r+1 to obtain xr+1

5 If nr+1 < n, go to 3.

Advantages:

Exploits sparse initialization.

Linear per-iteration and memory cost (except at the coarsest level).

Convergence rate improved due to ‖Ar‖2 < ‖Ar+1‖2.

Potential speed-up with m increasing [Oymak et al., 2015].

11 / 20



Physics-driven inverse problems Practical issues The best of both worlds Numerical results Conclusion

The best of both worlds

Multiscale optimization:
1 Build a multiscale pyramid: n0 < n1 < n2 < . . . nr . . . < n

2 Solve the synthesis BP at r = 0 with z
(0)
0 = 0 and compute x0 = D0z0

3 Interpolate xr to x̃r+1

4 Solve the analysis CP with x
(0)
r+1 = x̃r+1 to obtain xr+1

5 If nr+1 < n, go to 3.

Advantages:

Exploits sparse initialization.

Linear per-iteration and memory cost (except at the coarsest level).

Convergence rate improved due to ‖Ar‖2 < ‖Ar+1‖2.

Potential speed-up with m increasing [Oymak et al., 2015].

11 / 20



Physics-driven inverse problems Practical issues The best of both worlds Numerical results Conclusion

Numerical results

“Simple” problem: d2

dr2
x = z, r ∈ [0, φ] , x(0) = x(φ) = 0
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Numerical results

“Simple” problem: d2

dr2
x = z, r ∈ [0, φ] , x(0) = x(φ) = 0

FDM, n = 1000, k = 3, m = 50
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Numerical results

“Simple” problem: d2

dr2
x = z, r ∈ [0, φ] , x(0) = x(φ) = 0

Synthesis with random initialization
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Numerical results

“Simple” problem: d2

dr2
x = z, r ∈ [0, φ] , x(0) = x(φ) = 0

Synthesis with all-zero initialization - but we cannot solve it in the general case!
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Numerical results

“Simple” problem: d2

dr2
x = z, r ∈ [0, φ] , x(0) = x(φ) = 0

Analysis with coarse synthesis initialization: n1 = 250, n = 1000
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Numerical results

“Simple” problem: d2

dr2
x = z, r ∈ [0, φ] , x(0) = x(φ) = 0

Final estimate
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Numerical results

n = 10000, k = 5, varying m.
Three experimental regimes:

1 Single (large) scale analysis,
2 Five-scale pure analysis,
3 Five-scale: coarse synthesis + four-scale analysis.

Relative error criterion: ε = ‖x∗ − x̂‖2/‖x∗‖2

Fixed iteration budget:
Iterations for the single scale: N
Iterations for the multiscale:

∑
Nr = N .

Far fewer computations with multiscale, since Nr > Nr+1, r = 1 . . . 5.
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Numerical results

N : total iteration budget
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Numerical results

∆x(r) = z, r ∈ Ω \ ∂Ω

FEM multiscale: n1 < 200, 9 · 103 < n.

Off-the-grid measurements : calibration error.

Off-the-grid sources : “support leakage”.
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Numerical results

Original Pure analysis Init. synthesis

x(r1) = 1, r1 ∈ ∂Ω1
∂
∂~n
x(r2) = 0, r2 ∈ ∂Ω2

k = 1, N = 2000,m = 25
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Numerical results

Original Pure analysis Init. synthesis

x(r) = 0, r ∈ ∂Ω

k = 2, N = 2000, m = 100
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Conclusion

Low-cost cosparse multiscale optimization.

Sparse solutions: synthesis-based initialization is simple and effective.

Applicable to variety of physics-driven problems.

Generalization to other types of algorithms/regularizers.

Significance of interpolation/discretization method?

CP stepsize selection?

Verification on the real-world problems/data.
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Thank you!
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