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2Agenda

I Multi-pitch estimation.

I Superresolution/gridless/atomic norm using semidefinite
programming.

I Bringing it together.

I Complex- and real-valued data.

I Simulations



3Multi-pitch estimation I

I Harmonic signals: Fundamental ωk, first harmonic 2 · ωk,
second harmonic 3 · ωk.

I Multi-pitch: superposition of k = 1, . . . ,K harmonic
signals.

I Application in music, speech, vibration analysis etc.



4Multi-pitch estimation II

I K = 2 pitches

I L = 3 harmonics

I N = 160 samples

I SNR = 31 [dB]
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I Multi-pitch estimation: Estimate ωk, amplitudes (and K)1.

I Problem may be ill-posed or ill-conditioned.
1M. G. Christensen and A. Jakobsson. Multi-Pitch Estimation. San

Rafael, CA, USA: Morgan & Claypool, 2009.



5Atomic decomposition

I Atomic decomposition over a continuous dictionary
An ⊆ Cn using a regularization term

minimize f(
∑r

k=1 akc
H
k ) +

∑r
k=1 ‖ck‖2

subject to ak ∈ An, k = 1, . . . , r
. (1)

I Variables: Atoms ak ∈ Cn, coefficients
ck ∈ Cm, k = 1, . . . , r and the number of selected atoms r.

I m = 1 single measurement, m > 1 multiple measurement
case. Notice a kind of (group)-sparsity promoting term.

I In current literature: Often

An =
{ s√

n

[
1, exp(jω), . . . , exp(j(n− 1)ω)

]T
| |ω − α| ≤ β, |s| = 1, s ∈ C

}
(2)

with α = 0 and β = π.



6Atomic decomposition as a SDP

I With α = 0 and β = π, f convex, the atomic
decomposition is equivalent to the SDP

minimize f(X12) + 1
2(trX11 + trX22)

subject to

[
X11 X12

XH
12 X22

]
� 0

X11 ∈ Tn
X12 ∈ Cn×m, X22 ∈ Hm

(3)

with r = rank(X?
11).

2

2E. J. Candès and C. Fernandez-Granda. “Super-resolution from noisy
data”. In: J. Fourier Anal. Appl. 19.6 (2013), pp. 1229–1254; G. Tang
et al. “Compressed Sensing Off the Grid”. In: IEEE Trans. Information
Theory 59.11 (2013), pp. 7465–7490; B. N. Bhaskar, G. Tang, and B. Recht.
“Atomic Norm Denoising With Applications to Line Spectral Estimation”.
In: IEEE Trans. Signal Processing 61.23 (2013), pp. 5987–5999; Y. Li and
Y. Chi. “Off-the-Grid Line Spectrum Denoising and Estimation With
Multiple Measurement Vectors”. In: IEEE Trans. Signal Processing 64.5
(2016), pp. 1257–1269.



7Complex-valued multi-pitch model

The complex-valued multi-pitch model can be formulated as

x =

L∑
l=1

ZK(lω)c̄l, y = x+ w (4)

with

y =
[
y0, . . . , yN−1

]T
(5)

c̄l =
[
c̄l,1, . . . , c̄l,K

]T
(6)

ω =
[
ω1, . . . , ωK

]T
(7)

ZK(ω) =
[
z(ω1), . . . , z(ωK)

]
(8)

z(ωk) =
[
1, exp(jωk), . . . , exp(j(N − 1)ωk)

]T
(9)

w =
[
w0, . . . , wN−1

]T ∼ CN (0, σ2I) . (10)



8Bringing it together I

I Relating the formulations at n = NL

X12 =

r∑
k=1

akc
H
k , ak ∈ ANL . (11)

I Define the selection matrix Pl that selects N elements Plv
from every lth element of v, Plv =

[
v1, v1+l, . . . , v1+(N−1)l

]
.

Then
z(lωk) = Plak, for some ak ∈ ANL (12)

and we may form the selection and add matrix

P =
[
P1 P2 · · · PL

]
∈ RN×NL2

, Pl ∈ RN×NL . (13)



9Bringing it together II

I Let ck =
[
[c̄1]k · · · [c̄L]k

]H
.

I Then
L∑
l=1

ZK(lω)c̄l =

L∑
l=1

K∑
k=1

z(lωk)[c̄l]k

=

K∑
k=1

L∑
l=1

Plak[c̄l]k

=

K∑
k=1

P vec(akc
H
k )

= P vec

(
K∑
k=1

akc
H
k

)
= P vec (X12)

for some ak ∈ ANL, k = 1, . . . ,K and K = r.



10A complex-valued SDP formulation

I A complex-valued multi-pitch estimator can then be
formulated via the SDP

minimize 1
2(tr(X11) + tr(X22))

subject to ‖y − x‖2 ≤ δ
x = P vec(X12)[
X11 X12

XH
12 X22

]
� 0

X11 ∈ TNL
X22 ∈ HL, X12 ∈ CNL×L .

(14)



11A real-valued SDP formulation I

I The real-valued model is

x = <
(

L∑
l=1

ZK(lω)c̄l

)
, y = x+ w (15)

with w ∼ N (0, σ2I).
I A real-valued y ∈ RN atomic norm multi-pitch SDP

estimator is

minimize 1
2(tr(X11) + tr(X22))

subject to ‖y − P vec(<(X12))‖2 ≤ δ[
X11 X12

XH
12 X22

]
� 0

X11 ∈ TNL
X22 ∈ HL, X12 ∈ CNL×L

(16)

with a solution (X?
11, X

?
22, X

?
12).



12A real-valued SDP formulation II

I The optimal objective is
1
2(tr(X?

11) + tr(X?
22)) = 1

2(tr(<(X?
11)) + tr(<(X?

22)) and[
X?

11 X?
12

(X?
12)

H X?
22

]
� 0⇒ <

([
X?

11 X?
12

(X?
12)

H X?
22

])
� 0 . (17)

I If X?
11 is Toeplitz, then <(X?

11) is also Toeplitz.
I So, (<(X?

11),<(X?
22),<(X?

12)) also solves the previous SDP.
I We can instead solve the equivalent real SDP

minimize 1
2(tr(X11) + tr(X22))

subject to ‖y − P vec(X12)‖2 ≤ δ[
X11 X12

XT
12 X22

]
� 0

X11 ∈ SNL ∩ TNL
X22 ∈ SL, X12 ∈ RNL×L

(18)

with a solution that also solves the complex SDP (16).



13Frequency constraint

I If the signal y is Nyquist sampled: −π ≤ Lωk ≤ π.
I Recall the dictionary An:

An =
{ s√

n

[
1, exp(jω), . . . , exp(j(n− 1)ω)

]T
| |ω − α| ≤ β, |s| = 1, s ∈ C

}
. (19)

I The constrained controlled by the parameters α, β can be
imposed by adding a semidefinite cone constraint3

− ejαFX11G
T − e−jαGX11F

T + 2 cos(β)GX11G
T � 0 (20)

where F =
[
0 INL−1

]
, G =

[
INL−1 0

]
.

I With the selection α = 0, β = π/L, (20) is a real
semidefinite cone constraint and Toeplitz.

3H.-H. Chao and L. Vandenberghe. “Extension of semidefinite
programming methods for atomic decomposition”. In: ICASSP. 2016,
pp. 4757–4761.



14Simulations I

I Monte Carlo, R = 500 repetitions, known model-order,
K = 2, L = 3, real-valued data otherwise same setup as4.

I The proposed estimators are implemented with a CVXOPT
custom solver5 based on a non-canonical semidefinite cone
representation6 and an alternating direction method of
multipliers with fixed k = 350 iterations.

I δ: 1) solve the SDP with δ selected by averaging the
smallest 1

3 of the coefficients of the periodogram 2) extract
the frequencies ω?, re-select the regularization parameter as
minimum of linear least-squares, re-solve the SDP.

4M. G. Christensen et al. “Multi-pitch estimation”. In: Signal
Processing 88.4 (Apr. 2008), pp. 972–983.

5M. S. Andersen et al. “Interior-point methods for large-scale cone
programming”. In: Optimization for Machine Learning. Ed. by S. Sra,
S. Nowozin, and S. J. Wright. MIT Press, 2011.

6T. Roh and L. Vandenberghe. “Discrete transforms, semidefinite
programming and sum-of-squares representations of nonnegative
polynomials”. In: SIAM J. Optimiz. 16 (2006), pp. 939–964.



15Simulations II

I The accuracy should at-least for unbiased estimators be
governed by the asymptotic Cramér-Rao lower bound
(CRLB) for estimating a single fundamental ω̂k:

var(ω̂k) ≥
24σ2

(N(N2 − 1))
∑L

l=1A
2
k,ll

2
(21)

where Ak,l = |[c̄l]k|. These simulations Ak,l = 1.
I The bound depends on the “enhanced SNR”7 (for a single

pitch) or pseudo SNR (PSNR) for the kth pitch8

PSNRk = 10 log10

∑L
l=1A

2
k,ll

2

σ2
. (22)

7A. Nehorai and B. Porat. “Adaptive comb filtering for harmonic signal
enhancement”. In: IEEE Trans. Acoust., Speech, Signal Process.” 34.5
(Oct. 1986), pp. 1124–1138.

8M. G. Christensen et al. “Multi-pitch estimation”. In: Signal
Processing 88.4 (Apr. 2008), pp. 972–983.



16Simulations III: closely spaced fundamentals
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Figure : RMSE as a function of the fundamental frequency difference
ω2 − ω1 = ∆, K = 2, N = 160, L = 3, PSNR1 = PSNR2 = 40 [dB].



17Simulations IV: versus PSNR
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Figure : RMSE as a function of the PSNR = PSNR1 = PSNR2,
K = 2, N = 160, L = 3, and ω1 = 0.1580, ω2 = 0.6364.



18Summary

Multi-pitch estimation using semidefinite-programming:

I Convex optimization (semidefinite programming (SDP)).

I Gridless (atomic norm/superresolution, numerically:
accuracy determined by the underlying method).

I The real-valued model is “easier”/”computational more
efficient” compared to the complex-valued model.

I Approximately achieves the CRLB.

I High resolution (separating two pitches with almost the
same frequency).


